276 research outputs found

    A concrete certificateless signature scheme without pairings

    Get PDF
    Certificateless public key cryptography was introduced to avoid the inherent key escrow problem in identity-based cryptography, and eliminate the use of certificates in traditional PKI. Most cryptographic schemes in certificateless cryptography are built from bilinear mappings on elliptic curves which need costly operations. Despite the investigation of certificateless public key encryption without pairings, certificateless signature without pairings received much less attention than what it deserves. In this paper, we present a concrete pairing-free certificateless signature scheme for the first time. Our scheme is more computationally efficient than others built from pairings. The new scheme is provably secure in the random oracle model assuming the hardness of discrete logarithm problem

    On the security of a certicateless signature scheme in the standard model

    Get PDF
    Most of certificateless signature schemes without random oracles can not resist key replacement attack. To overcome this security weakness, Yu et al. recently propose a new certificateless signature scheme and claimed that their scheme is provably secure in the standard model. However, in this paper, we show their scheme is still insecure against key replacement attack where an adversary who replaces the public key of a signer can forge valid signatures on any messages for that signer without knowing the signer\u27s partial secret key. Moreover, we show Yu et al.\u27s certificateless signature scheme is vulnerable to ``malicious-but-passive\u27\u27 KGC attack where a malicious KGC can forge valid signatures by embedding extra trapdoors in the system parameter

    Cryptanalysis of Provably Secure Certicateless Short Signature Scheme

    Get PDF
    Recently, Choi et al. proposed certificateless short signature scheme in random oracle model and the author claims that it is provably secure. Certificateless Public Key Cryptography is a new paradigm, where it allows resolving the inherent key escrow and key management problem. Attack to certificateless signature scheme are of two types as Type-I where the adversary can replace the public key of the user and cannot able to retrieve the master secret key from Key Generator Center (KGC). In Type-II, the adversary can able to obtain the master secret key and cannot replace the public key of the user. In this paper we have proven that, the proposed scheme is not secure against Type-I adversary. To prove, we solve linear Diophantine equation and obtain the partial-private key of the user

    Efficient and Provably-secure Certificateless Strong Designated Verifier Signature Scheme without Pairings

    Get PDF
    Strong designated verifier signature (generally abbreviated to SDVS) allows signers to obtain absolute control over who can verify the signature, while only the designated verifier other than anyone else can verify the validity of a SDVS without being able to transfer the conviction. Certificateless PKC has unique advantages comparing with certificate-based cryptosystems and identity-based PKC, without suffering from key escrow. Motivated by these attractive features, we propose a novel efficient CL-SDVS scheme without bilinear pairings or map-to-point hash operations. The proposed scheme achieves all the required security properties including EUF-CMA, non-transferability, strongness and non-delegatability. We also estimate the computational and communication efficiency. The comparison shows that our scheme outperforms all the previous CL-(S)DVS schemes. Furthermore, the crucial security properties of the CL-SDVS scheme are formally proved based on the intractability of SCDH and ECDL assumptions in random oracle model

    Lightweight certificateless and provably-secure signcryptosystem for the internet of things

    Get PDF
    International audienceIn this paper, we propose an elliptic curve-based signcryption scheme derived from the standardized signature KCDSA (Korean Certificate-based Digital Signature Algorithm) in the context of the Internet of Things. Our solution has several advantages. First, the scheme is provably secure in the random oracle model. Second, it provides the following security properties: outsider/insider confidentiality and unforgeability; non-repudiation and public verifiability, while being efficient in terms of communication and computation costs. Third, the scheme offers the certificateless feature, so certificates are not needed to verify the user's public keys. For illustration, we conducted experimental evaluation based on a sensor Wismote platform and compared the performance of the proposed scheme to concurrent scheme
    • …
    corecore