11 research outputs found

    Shallow-water benthic habitat mapping using drone with object based image analyses

    Get PDF
    Spatial information on benthic habitats in Wangiwangi island waters, Wakatobi District, Indonesia was very limited in recent years. However, this area is one of the marine tourism destinations and one of the Indonesia’s triangle coral reef regions with a very complex coral reef ecosystem. The drone technology that has rapidly developed in this decade, can be used to map benthic habitats in this area. This study aimed to map shallow-water benthic habitats using drone technology in the region of Wangiwangi island waters, Wakatobi District, Indonesia. The field data were collected using a 50 × 50 cm squared transect of 434 observation points in March–April 2017. The DJI Phantom 3 Pro drone with a spatial resolution of 5.2 × 5.2 cm was used to acquire aerial photographs. Image classifications were processed using object-based image analysis (OBIA) method with contextual editing classification at level 1 (reef level) with 200 segmentation scale and several segmentation scales at level 2 (benthic habitat). For level 2 classification, we found that the best algorithm to map benthic habitat was the support vector machine (SVM) algorithm with a segmentation scale of 50. Based on field observations, we produced 12 and 9 benthic habitat classes. Using the OBIA method with a segmentation value of 50 and the SVM algorithm, we obtained the overall accuracy of 77.4% and 81.1% for 12 and 9 object classes, respectively. This result improved overall accuracy up to 17% in mapping benthic habitats using Sentinel-2 satellite data within the similar region, similar classes, and similar method of classification analyses

    Investigative Development of an UWB Radar for UAS-borne Applications

    Get PDF
    The engineering ethos of the last decade has been miniaturization. Progress in various industries like material design, semiconductor technology, and digital signal processing has resulted in low-profile electrical systems. This has facilitated the means of integration onto platforms. Sensors such as radars are typically large, heavy, and consume a lot of power. Miniaturization of radars can enable important applications like remote sensing the various aspects of the Earth System from Unmanned Aerial Systems (UAS). Information about natural topography like ice sheets, vegetation cover, and ocean currents can improve our understanding of the natural processes and continued measurements offer insight into the changes over time. Soil plays a vital role in the Earth’s hydrological cycle. The moisture in soil influences the weather, vegetation, and human endeavors like construction. Models are built using an extensive set of temporal soil moisture data to predict natural disasters like droughts, floods, and landslides. It plays a central role in the areas of agriculture and water resource management and hence can influence policy making and economic decisions. In this work, an investigative approach to the design, build, and test of a 2 – 18 GHz Frequency Modulated Continuous Wave radar for snow and soil measurements is reported. The radar system is designed to be integrated to the Vapor 55 rotorcraft, which is a Group 1 UAS. The radar can operate as a scatterometer to measure backscatter signatures in all four combinations of vertical and horizontal polarizations; or as a nadir-looking sounder for fine-resolution snow thickness measurements. One of the primary contributions of this work is the exploration of a single-module that integrates the radar’s RF transmitter, RF receiver, receiver’s IF section, wideband sweep generator, and the DC bias circuitry for the active components. The sweep generator is based on a phase-locked loop and frequency multiplication/translation stage. The compact assembly is in the form of two multilayer Printed Circuit Boards (PCB) merged together and it occupies an area of nearly 170 cm2. This thesis describes the design, construction, and testing of the module, along with recommendations for future revisions. A commercially off-the-shelf module (Arena series by Tomorrow.io, formerly Remote Sensing Solutions) is the digital backend and it consists of an Arbitrary Waveform Generator (AWG) and a data acquisition system capable of sampling up to 250 MSPS. The module is low-profile with dimensions of 7.6 cm x 19.3 cm x 2.3 cm and weighs less than 400 g including the separate aluminum enclosure intended to be integrated with the radar’s RF and mixed-signal sections. A second contribution of this work is the design of a prototype antenna front-end, which consists of four four-element antenna arrays housed in a Delrin plastic fixture and are fed using custom-designed microstrip power dividers. The dimensions of the fixture are 13.7 cm x 5.9 cm x 5.5 cm and the uniform elemental distance is 2.5 cm. The arrays are fastened to a metal sheet and a custom-designed four-layer fiberglass composite fairing protects the arrays. The entire front-end is integrated on the rotorcraft and measured in an anechoic chamber. The measured, fully integrated return loss of each array covers 2 – 18 GHz and the highest value is -7.22 dB at 5.23 GHz. The radiation pattern shows a distinct nadir-pointing main lobe for nearly the entire bandwidth, however the effects of the platform increase the average side-lobe levels to less than 10 dB for 12 – 18 GHz. The measured maximum nadir gain is 15.88 dB at 10 GHz and there is a greater than 6 dB variation in magnitude within the bandwidth. This variation is compensated by processing the backscatter data over distinct sub-bands that have a maximum nadir gain variation of 6 dB. Lastly, the thesis describes two system tests conducted to evaluate the effectiveness of a prototype radar with soil as the target. These are proof-of-concept measurements to detect differences in backscatter signatures between dry and wet soil. Gravimetric measurements of collected soil samples indicate an average change of 9.5% between the two moisture states. The antenna front-end is exclusively characterized using a Vector Network Analyzer and measurements are recorded for both co- and cross-polarization at three look angles of nadir, 15°, and 30°. The relative measurements are repeated on the same patch of land with a 1U version of the miniaturized radar. There are distinct differences in relative received power and backscatter profile for all four polarizations and at each look angle. It is observed that vertical polarization indicates a change in moisture content by an increase in the relative received power over an extended range beyond the primary backscatter signal. The horizontal polarization results in a greater peak received power for the primary backscatter signal, relative to the vertical polarization. The degradation in backscatter profile for vertical polarization is higher than horizontal polarization as a function of angle and this is observed for both dry and wet soil.The ETD Release form has been added to this record as a License bitstrea

    Aeronautical engineering: A continuing bibliography with indexes (supplement 267)

    Get PDF
    This bibliography lists 661 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; theoretical and applied aspects of aerodynamics and general fluid dynamics; electrical engineering; aircraft control; remote sensing; computer sciences; nuclear physics; and social sciences

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress

    Get PDF
    Published proceedings of the 2018 Canadian Society for Mechanical Engineering (CSME) International Congress, hosted by York University, 27-30 May 2018

    A New Propagation Channel Synthesizer for UAVs in the Presence of Tree Canopies

    No full text
    Following the increasing popularity of unmanned aerial vehicles (UAVs) for remote sensing applications, the reliable operation under a number of various radio wave propagation conditions is required. Assuming common outdoor scenarios, the presence of trees in the vicinity of a UAV or its ground terminal is highly probable. However, such a scenario is very difficult to address from a radio wave propagation point of view. Recently, an approach based on physical optics (PO) and the multiple scattering theory (MST) has been proposed by the authors, which enables fast and straightforward predictions of tree-scattered fields at microwave frequencies. In this paper, this approach is developed further into a generative model capable of providing both the narrowband and wideband synthetic time series of received/transmitted signals which are needed for both UAV communications and remote sensing applications in the presence of scattering from tree canopies. The proposed channel synthesizer is validated using both an artificially-generated scenario and actual experimental dataset
    corecore