9 research outputs found

    Weighted zeta functions for quotients of regular coverings of graphs

    Get PDF
    AbstractLet G be a connected graph. We reformulate Stark and Terras' Galois Theory for a quotient H of a regular covering K of a graph G by using voltage assignments. As applications, we show that the weighted Bartholdi L-function of H associated to the representation of the covering transformation group of H is equal to that of G associated to its induced representation in the covering transformation group of K. Furthermore, we express the weighted Bartholdi zeta function of H as a product of weighted Bartholdi L-functions of G associated to irreducible representations of the covering transformation group of K. We generalize Stark and Terras' Galois Theory to digraphs, and apply to weighted Bartholdi L-functions of digraphs

    Zeta functions for infinite graphs and functional equations

    Get PDF
    The definitions and main properties of the Ihara and Bartholdi zeta functions for infinite graphs are reviewed. The general question of the validity of a functional equation is discussed, and various possible solutions are proposed.Comment: 23 pages, 3 figures. Accepted for publication in "Fractals in Applied Mathematics", Contemporary Mathematics, Editors Carfi, Lapidus, Pearse, van Frankenhuijse

    Zeta functions of line, middle, total graphs of a graph and their coverings

    Get PDF
    AbstractWe consider the (Ihara) zeta functions of line graphs, middle graphs and total graphs of a regular graph and their (regular or irregular) covering graphs. Let L(G), M(G) and T(G) denote the line, middle and total graph of G, respectively. We show that the line, middle and total graph of a (regular and irregular, respectively) covering of a graph G is a (regular and irregular, respectively) covering of L(G), M(G) and T(G), respectively. For a regular graph G, we express the zeta functions of the line, middle and total graph of any (regular or irregular) covering of G in terms of the characteristic polynomial of the covering. Also, the complexities of the line, middle and total graph of any (regular or irregular) covering of G are computed. Furthermore, we discuss the L-functions of the line, middle and total graph of a regular graph G

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore