294,681 research outputs found

    A New Procedure to Monitor the Mean of a Quality Characteristic

    Get PDF
    The Shewhart, Bonferroni-adjustment and analysis of means (ANOM) control chart are typically applied to monitor the mean of a quality characteristic. The Shewhart and Bonferroni procedure are utilized to recognize special causes in production process, where the control limits are constructed by assuming normal distribution for known parameters (mean and standard deviation), and approximately normal distribution regarding to unknown parameters. The ANOM method is an alternative to the analysis of variance method. It can be used to establish the mean control charts by applying equicorrelated multivariate non-central t distribution. In this paper, we establish new control charts, in phases I and II monitoring, based on normal and t distributions having as a cause a known (or unknown) parameter (standard deviation). Our proposed methods are at least as effective as the classical Shewhart methods and have some advantages

    A New Procedure to Monitor the Mean of a Quality Characteristic

    Get PDF
    The Shewhart, Bonferroni-adjustment and analysis of means (ANOM) control chart are typically applied to monitor the mean of a quality characteristic. The Shewhart and Bonferroni procedure are utilized to recognize special causes in production process, where the control limits are constructed by assuming normal distribution for known parameters (mean and standard deviation), and approximately normal distribution regarding to unknown parameters. The ANOM method is an alternative to the analysis of variance method. It can be used to establish the mean control charts by applying equicorrelated multivariate non-central t distribution. In this paper, we establish new control charts, in phases I and II monitoring, based on normal and t distributions having as a cause a known (or unknown) parameter (standard deviation). Our proposed methods are at least as effective as the classical Shewhart methods and have some advantages

    Pain detection with bioimpedance methodology from 3-dimensional exploration of nociception in a postoperative observational trial

    Get PDF
    Although the measurement of dielectric properties of the skin is a long-known tool for assessing the changes caused by nociception, the frequency modulated response has not been considered yet. However, for a rigorous characterization of the biological tissue during noxious stimulation, the bioimpedance needs to be analyzed over time as well as over frequency. The 3-dimensional analysis of nociception, including bioimpedance, time, and frequency changes, is provided by ANSPEC-PRO device. The objective of this observational trial is the validation of the new pain monitor, named as ANSPEC-PRO. After ethics committee approval and informed consent, 26 patients were monitored during the postoperative recovery period: 13 patients with the in-house developed prototype ANSPEC-PRO and 13 with the commercial device MEDSTORM. At every 7 min, the pain intensity was measured using the index of Anspec-pro or Medstorm and the 0-10 numeric rating scale (NRS), pre-surgery for 14 min and post-anesthesia for 140 min. Non-significant differences were reported for specificity-sensitivity analysis between ANSPEC-PRO (AUC = 0.49) and MEDSTORM (AUC = 0.52) measured indexes. A statistically significant positive linear relationship was observed between Anspec-pro index and NRS (r(2) = 0.15, p < 0.01). Hence, we have obtained a validation of the prototype Anspec-pro which performs equally well as the commercial device under similar conditions

    Robot introspection through learned hidden Markov models

    Get PDF
    In this paper we describe a machine learning approach for acquiring a model of a robot behaviour from raw sensor data. We are interested in automating the acquisition of behavioural models to provide a robot with an introspective capability. We assume that the behaviour of a robot in achieving a task can be modelled as a finite stochastic state transition system. Beginning with data recorded by a robot in the execution of a task, we use unsupervised learning techniques to estimate a hidden Markov model (HMM) that can be used both for predicting and explaining the behaviour of the robot in subsequent executions of the task. We demonstrate that it is feasible to automate the entire process of learning a high quality HMM from the data recorded by the robot during execution of its task.The learned HMM can be used both for monitoring and controlling the behaviour of the robot. The ultimate purpose of our work is to learn models for the full set of tasks associated with a given problem domain, and to integrate these models with a generative task planner. We want to show that these models can be used successfully in controlling the execution of a plan. However, this paper does not develop the planning and control aspects of our work, focussing instead on the learning methodology and the evaluation of a learned model. The essential property of the models we seek to construct is that the most probable trajectory through a model, given the observations made by the robot, accurately diagnoses, or explains, the behaviour that the robot actually performed when making these observations. In the work reported here we consider a navigation task. We explain the learning process, the experimental setup and the structure of the resulting learned behavioural models. We then evaluate the extent to which explanations proposed by the learned models accord with a human observer's interpretation of the behaviour exhibited by the robot in its execution of the task

    Comparison of two cardiac output monitors, qCO and LiDCO, during general anesthesia

    Get PDF
    Background: Optimization of cardiac output (CO) has been evidenced to reduce postoperative complications and to expedite the recovery. Likewise, CO and other dynamic cardiac parameters can describe the systemic blood flow and tissue oxygenation state and can be useful in different clinical fields. This study aimed to validate the qCO monitor (Quantium Medical, Barcelona, Spain), a new device to estimate CO and other related parameters in a continuous, fully non-invasive way using advanced digital signal processing of impedance cardiography. Methods: The LiDCOrapidv2 (LiDCO Ltd, London, UK) was used to compare the performance of the qCO in 15 patients during major surgery under general anesthesia. Full surgeries were recorded and cardiac output obtained by both devices was compared by using correlation and Bland-Altman analysis. Results: The Bland-Altman analysis showed sufficient agreement with a mean bias of -0.03 ± 0.71 L/min. Conclusions: The findings showed that both systems offered comparable values and thus the non-invasive measurement of CO with qCO is a promising, feasible method. Further investigation will be required to validate this new device against calibrated devices and outcome studies would also be highly recommended.Postprint (author's final draft

    A simple approach for monitoring business service time variation.

    Get PDF
    Control charts are effective tools for signal detection in both manufacturing processes and service processes. Much of the data in service industries comes from processes having nonnormal or unknown distributions. The commonly used Shewhart variable control charts, which depend heavily on the normality assumption, are not appropriately used here. In this paper, we propose a new asymmetric EWMA variance chart (EWMA-AV chart) and an asymmetric EWMA mean chart (EWMA-AM chart) based on two simple statistics to monitor process variance and mean shifts simultaneously. Further, we explore the sampling properties of the new monitoring statistics and calculate the average run lengths when using both the EWMA-AV chart and the EWMA-AM chart. The performance of the EWMA-AV and EWMA-AM charts and that of some existing variance and mean charts are compared. A numerical example involving nonnormal service times from the service system of a bank branch in Taiwan is used to illustrate the applications of the EWMA-AV and EWMA-AM charts and to compare them with the existing variance (or standard deviation) and mean charts. The proposed EWMA-AV chart and EWMA-AM charts show superior detection performance compared to the existing variance and mean charts. The EWMA-AV chart and EWMA-AM chart are thus recommended

    A Time Truncated Moving Average Chart for the Weibull Distribution

    Get PDF
    A control chart of monitoring the number of failures is proposed with a moving average scheme, when the life of an item follows a Weibull distribution. A specified number of items are put on a time truncated life test and the number of failures is observed. The proposed control chart has been evaluated by the average run lengths (ARLs) under different parameter settings. The control constant and the test time multiplier are to be determined by considering the in-control ARL. It is observed that the proposed control chart is more efficient in detecting a shift in the process as compared with the existing time truncated control chart. ? 2013 IEEE.11Ysciescopu

    Freeze-drying modeling and monitoring using a new neuro-evolutive technique

    Get PDF
    This paper is focused on the design of a black-box model for the process of freeze-drying of pharmaceuticals. A new methodology based on a self-adaptive differential evolution scheme is combined with a back-propagation algorithm, as local search method, for the simultaneous structural and parametric optimization of the model represented by a neural network. Using the model of the freeze-drying process, both the temperature and the residual ice content in the product vs. time can be determine off-line, given the values of the operating conditions (the temperature of the heating shelf and the pressure in the drying chamber). This makes possible to understand if the maximum temperature allowed by the product is trespassed and when the sublimation drying is complete, thus providing a valuable tool for recipe design and optimization. Besides, the black box model can be applied to monitor the freeze-drying process: in this case, the measurement of product temperature is used as input variable of the neural network in order to provide in-line estimation of the state of the product (temperature and residual amount of ice). Various examples are presented and discussed, thus pointing out the strength of the too

    Reliability demonstration for safety-critical systems

    Get PDF
    This paper suggests a new model for reliability demonstration of safety-critical systems, based on the TRW Software Reliability Theory. The paper describes the model; the test equipment required and test strategies based on the various constraints occurring during software development. The paper also compares a new testing method, Single Risk Sequential Testing (SRST), with the standard Probability Ratio Sequential Testing method (PRST), and concludes that: • SRST provides higher chances of success than PRST • SRST takes less time to complete than PRST • SRST satisfies the consumer risk criterion, whereas PRST provides a much smaller consumer risk than the requirement
    corecore