143,993 research outputs found

    A new problem in string searching

    Full text link
    We describe a substring search problem that arises in group presentation simplification processes. We suggest a two-level searching model: skip and match levels. We give two timestamp algorithms which skip searching parts of the text where there are no matches at all and prove their correctness. At the match level, we consider Harrison signature, Karp-Rabin fingerprint, Bloom filter and automata based matching algorithms and present experimental performance figures.Comment: To appear in Proceedings Fifth Annual International Symposium on Algorithms and Computation (ISAAC'94), Lecture Notes in Computer Scienc

    String Searching with Ranking Constraints and Uncertainty

    Get PDF
    Strings play an important role in many areas of computer science. Searching pattern in a string or string collection is one of the most classic problems. Different variations of this problem such as document retrieval, ranked document retrieval, dictionary matching has been well studied. Enormous growth of internet, large genomic projects, sensor networks, digital libraries necessitates not just efficient algorithms and data structures for the general string indexing, but indexes for texts with fuzzy information and support for queries with different constraints. This dissertation addresses some of these problems and proposes indexing solutions. One such variation is document retrieval query for included and excluded/forbidden patterns, where the objective is to retrieve all the relevant documents that contains the included patterns and does not contain the excluded patterns. We continue the previous work done on this problem and propose more efficient solution. We conjecture that any significant improvement over these results is highly unlikely. We also consider the scenario when the query consists of more than two patterns. The forbidden pattern problem suffers from the drawback that linear space (in words) solutions are unlikely to yield a solution better than O(root(n/occ)) per document reporting time, where n is the total length of the documents and occ is the number of output documents. Continuing this path, we introduce a new variation, namely document retrieval with forbidden extension query, where the forbidden pattern is an extension of the included pattern.We also address the more general top-k version of the problem, which retrieves the top k documents, where the ranking is based on PageRank relevance metric. This problem finds motivation from search applications. It also holds theoretical interest as we show that the hardness of forbidden pattern problem is alleviated in this problem. We achieve linear space and optimal query time for this variation. We also propose succinct indexes for both these problems. Position restricted pattern matching considers the scenario where only part of the text is searched. We propose succinct index for this problem with efficient query time. An important application for this problem stems from searching in genomic sequences, where only part of the gene sequence is searched for interesting patterns. The problem of computing discriminating(resp. generic) words is to report all minimal(resp. maximal) extensions of a query pattern which are contained in at most(resp. at least) a given number of documents. These problems are motivated from applications in computational biology, text mining and automated text classification. We propose succinct indexes for these problems. Strings with uncertainty and fuzzy information play an important role in increasingly many applications. We propose a general framework for indexing uncertain strings such that a deterministic query string can be searched efficiently. String matching becomes a probabilistic event when a string contains uncertainty, i.e. each position of the string can have different probable characters with associated probability of occurrence for each character. Such uncertain strings are prevalent in various applications such as biological sequence data, event monitoring and automatic ECG annotations. We consider two basic problems of string searching, namely substring searching and string listing. We formulate these well known problems for uncertain strings paradigm and propose exact and approximate solution for them. We also discuss a constrained variation of orthogonal range searching. Given a set of points, the task of orthogonal range searching is to build a data structure such that all the points inside a orthogonal query region can be reported. We introduce a new variation, namely shared constraint range searching which naturally arises in constrained pattern matching applications. Shared constraint range searching is a special four sided range reporting query problem where two constraints has sharing among them, effectively reducing the number of independent constraints. For this problem, we propose a linear space index that can match the best known bound for three dimensional dominance reporting problem. We extend our data structure in the external memory model

    The Wavelet Trie: Maintaining an Indexed Sequence of Strings in Compressed Space

    Full text link
    An indexed sequence of strings is a data structure for storing a string sequence that supports random access, searching, range counting and analytics operations, both for exact matches and prefix search. String sequences lie at the core of column-oriented databases, log processing, and other storage and query tasks. In these applications each string can appear several times and the order of the strings in the sequence is relevant. The prefix structure of the strings is relevant as well: common prefixes are sought in strings to extract interesting features from the sequence. Moreover, space-efficiency is highly desirable as it translates directly into higher performance, since more data can fit in fast memory. We introduce and study the problem of compressed indexed sequence of strings, representing indexed sequences of strings in nearly-optimal compressed space, both in the static and dynamic settings, while preserving provably good performance for the supported operations. We present a new data structure for this problem, the Wavelet Trie, which combines the classical Patricia Trie with the Wavelet Tree, a succinct data structure for storing a compressed sequence. The resulting Wavelet Trie smoothly adapts to a sequence of strings that changes over time. It improves on the state-of-the-art compressed data structures by supporting a dynamic alphabet (i.e. the set of distinct strings) and prefix queries, both crucial requirements in the aforementioned applications, and on traditional indexes by reducing space occupancy to close to the entropy of the sequence

    On the nature of cosmic strings in the brane world

    Full text link
    We investigate a static, cylindrically symmetric cosmic string on the brane without a perturbative approximation. We find there could be a (large) enhancement of the (effective) string tension when the energy density at the center of the string is (much) larger than twice the brane tension. We also point out a new way to evade the cosmic string problem when the energy density at the center of the string approaches twice the brane tension. These findings could have experimental and theoretical implications for searching for cosmic strings on the brane, in particular for cosmic strings generated after inflation (such as D-term inflation) on the brane.Comment: 11 pages, 3 figures, the version to be published in the Chinese Journal of Physic

    Improved algorithms for string searching problems

    Get PDF
    We present improved practically efficient algorithms for several string searching problems, where we search for a short string called the pattern in a longer string called the text. We are mainly interested in the online problem, where the text is not preprocessed, but we also present a light indexing approach to speed up exact searching of a single pattern. The new algorithms can be applied e.g. to many problems in bioinformatics and other content scanning and filtering problems. In addition to exact string matching, we develop algorithms for several other variations of the string matching problem. We study algorithms for approximate string matching, where a limited number of errors is allowed in the occurrences of the pattern, and parameterized string matching, where a substring of the text matches the pattern if the characters of the substring can be renamed in such a way that the renamed substring matches the pattern exactly. We also consider searching multiple patterns simultaneously and searching weighted patterns, where the weight of a character at a given position reflects the probability of that character occurring at that position. Many of the new algorithms use the backward matching principle, where the characters of the text that are aligned with the pattern are read backward, i.e. from right to left. Another common characteristic of the new algorithms is the use of q-grams, i.e. q consecutive characters are handled as a single character. Many of the new algorithms are bit parallel, i.e. they pack several variables to a single computer word and update all these variables with a single instruction. We show that the q-gram backward string matching algorithms that solve the exact, approximate, or multiple string matching problems are optimal on average. We also show that the q-gram backward string matching algorithm for the parameterized string matching problem is sublinear on average for a class of moderately repetitive patterns. All the presented algorithms are also shown to be fast in practice when compared to earlier algorithms. We also propose an alphabet sampling technique to speed up exact string matching. We choose a subset of the alphabet and select the corresponding subsequence of the text. String matching is then performed on this reduced subsequence and the found matches are verified in the original text. We show how to choose the sampled alphabet optimally and show that the technique speeds up string matching especially for moderate to long patterns

    Searching for axion-like particles with X-ray polarimeters

    Get PDF
    X-ray telescopes are an exceptional tool for searching for new fundamental physics. In particular, X-ray observations have already placed world-leading bounds on the interaction between photons and axion-like particles (ALPs). ALPs are hypothetical new ultra-light particles motivated by string theory models. They can also act as dark matter and dark energy, and provide a solution to the strong CP problem. In a background magnetic field, ALPs and photons may interconvert. This leads to energy dependent modulations in both the flux and polarisation of the spectra of point sources shining through large magnetic fields. The next generation of polarising X-ray telescopes will offer new detection possibilities for ALPs. Here we present techniques and projected bounds for searching for ALPs with X-ray polarimetry. We demonstrate that upcoming X-ray polarimetry missions have the potential to place world-leading bounds on ALPs

    Substring Range Reporting

    Get PDF
    We revisit various string indexing problems with range reporting features, namely, position-restricted substring searching, indexing substrings with gaps, and indexing substrings with intervals. We obtain the following main results. {itemize} We give efficient reductions for each of the above problems to a new problem, which we call \emph{substring range reporting}. Hence, we unify the previous work by showing that we may restrict our attention to a single problem rather than studying each of the above problems individually. We show how to solve substring range reporting with optimal query time and little space. Combined with our reductions this leads to significantly improved time-space trade-offs for the above problems. In particular, for each problem we obtain the first solutions with optimal time query and O(nlogO(1)n)O(n\log^{O(1)} n) space, where nn is the length of the indexed string. We show that our techniques for substring range reporting generalize to \emph{substring range counting} and \emph{substring range emptiness} variants. We also obtain non-trivial time-space trade-offs for these problems. {itemize} Our bounds for substring range reporting are based on a novel combination of suffix trees and range reporting data structures. The reductions are simple and general and may apply to other combinations of string indexing with range reporting

    Locating regions in a sequence under density constraints

    Get PDF
    Several biological problems require the identification of regions in a sequence where some feature occurs within a target density range: examples including the location of GC-rich regions, identification of CpG islands, and sequence matching. Mathematically, this corresponds to searching a string of 0s and 1s for a substring whose relative proportion of 1s lies between given lower and upper bounds. We consider the algorithmic problem of locating the longest such substring, as well as other related problems (such as finding the shortest substring or a maximal set of disjoint substrings). For locating the longest such substring, we develop an algorithm that runs in O(n) time, improving upon the previous best-known O(n log n) result. For the related problems we develop O(n log log n) algorithms, again improving upon the best-known O(n log n) results. Practical testing verifies that our new algorithms enjoy significantly smaller time and memory footprints, and can process sequences that are orders of magnitude longer as a result.Comment: 17 pages, 8 figures; v2: minor revisions, additional explanations; to appear in SIAM Journal on Computin
    corecore