1,340 research outputs found

    Dispersion Entropy: A Measure of Electrohysterographic Complexity for Preterm Labor Discrimination

    Full text link
    [EN] Although preterm labor is a major cause of neonatal death and often leaves health sequels in the survivors, there are no accurate and reliable clinical tools for preterm labor prediction. The Electrohysterogram (EHG) has arisen as a promising alternative that provides relevant information on uterine activity that could be useful in predicting preterm labor. In this work, we optimized and assessed the performance of the Dispersion Entropy (DispEn) metric and compared it to conventional Sample Entropy (SampEn) in EHG recordings to discriminate term from preterm deliveries. For this, we used the two public databases TPEHG and TPEHGT DS of EHG recordings collected from women during regular checkups. The 10th, 50th and 90th percentiles of entropy metrics were computed on whole (WBW) and fast wave high (FWH) EHG bandwidths, sweeping the DispEn and SampEn internal parameters to optimize term/preterm discrimination. The results revealed that for both the FWH and WBW bandwidths the best separability was reached when computing the 10th percentile, achieving a p-value (0.00007) for DispEn in FWH, c = 7 and m = 2, associated with lower complexity preterm deliveries, indicating that DispEn is a promising parameter for preterm labor prediction.This work was supported by the Spanish ministry of economy and competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and the Generalitat Valenciana (AICO/2019/220).Nieto-Del-Amor, F.; Ye Lin, Y.; Garcia-Casado, J.; Díaz-Martínez, MDA.; González Martínez, M.; Monfort-Ortiz, R.; Prats-Boluda, G. (2021). Dispersion Entropy: A Measure of Electrohysterographic Complexity for Preterm Labor Discrimination. SCITEPRESS. 260-267. https://doi.org/10.5220/0010316602600267S26026

    Wearable in-ear pulse oximetry: theory and applications

    Get PDF
    Wearable health technology, most commonly in the form of the smart watch, is employed by millions of users worldwide. These devices generally exploit photoplethysmography (PPG), the non-invasive use of light to measure blood volume, in order to track physiological metrics such as pulse and respiration. Moreover, PPG is commonly used in hospitals in the form of pulse oximetry, which measures light absorbance by the blood at different wavelengths of light to estimate blood oxygen levels (SpO2). This thesis aims to demonstrate that despite its widespread usage over many decades, this sensor still possesses a wealth of untapped value. Through a combination of advanced signal processing and harnessing the ear as a location for wearable sensing, this thesis introduces several novel high impact applications of in-ear pulse oximetry and photoplethysmography. The aims of this thesis are accomplished through a three pronged approach: rapid detection of hypoxia, tracking of cognitive workload and fatigue, and detection of respiratory disease. By means of the simultaneous recording of in-ear and finger pulse oximetry at rest and during breath hold tests, it was found that in-ear SpO2 responds on average 12.4 seconds faster than the finger SpO2. This is likely due in part to the ear being in close proximity to the brain, making it a priority for oxygenation and thus making wearable in-ear SpO2 a good proxy for core blood oxygen. Next, the low latency of in-ear SpO2 was further exploited in the novel application of classifying cognitive workload. It was found that in-ear pulse oximetry was able to robustly detect tiny decreases in blood oxygen during increased cognitive workload, likely caused by increased brain metabolism. This thesis demonstrates that in-ear SpO2 can be used to accurately distinguish between different levels of an N-back memory task, representing different levels of mental effort. This concept was further validated through its application to gaming and then extended to the detection of driver related fatigue. It was found that features derived from SpO2 and PPG were predictive of absolute steering wheel angle, which acts as a proxy for fatigue. The strength of in-ear PPG for the monitoring of respiration was investigated with respect to the finger, with the conclusion that in-ear PPG exhibits far stronger respiration induced intensity variations and pulse amplitude variations than the finger. All three respiratory modes were harnessed through multivariate empirical mode decomposition (MEMD) to produce spirometry-like respiratory waveforms from PPG. It was discovered that these PPG derived respiratory waveforms can be used to detect obstruction to breathing, both through a novel apparatus for the simulation of breathing disorders and through the classification of chronic obstructive pulmonary disease (COPD) in the real world. This thesis establishes in-ear pulse oximetry as a wearable technology with the potential for immense societal impact, with applications from the classification of cognitive workload and the prediction of driver fatigue, through to the detection of chronic obstructive pulmonary disease. The experiments and analysis in this thesis conclusively demonstrate that widely used pulse oximetry and photoplethysmography possess a wealth of untapped value, in essence teaching the old PPG sensor new tricks.Open Acces

    The relationship between demoralization and depressive symptoms among patients from the general hospital: Network and exploratory graph analysis

    Get PDF
    Introduction: Depression and demoralization are highly prevalent among individuals with physical illnesses but their relationship is still unclear. Objective: To examine the relationship between clinical features of depression and demoralization with the network approach to psychopathology. Methods: Participants were recruited from the medical wards of a University Hospital in Italy. The Demoralization Scale (DS) was used to assess demoralization, while the Patient Health Questionnaire-9 (PHQ-9) to assess depressive symptoms. The structure of the depression-demoralization symptom network was examined and complemented by the analysis of topological overlap and Exploratory Graph Analysis (EGA) to identify the most relevant groupings (communities) of symptoms and their connections. The stability of network models was estimated with bootstrap procedures and results were compared with factor analysis. Results: Life feeling pointless, low mood/discouragement, hopelessness and feeling trapped were among the most central features of the network. EGA identified four communities: (1) Neurovegetative Depression, (2) Loss of purpose, (3) Frustrated Isolation and (4) Low mood and morale. Loss of purpose and low mood/morale were largely connected with other communities through anhedonia, hopelessness and items related to isolation and lack of emotional control. Results from EGA displayed good stability and were comparable to those from factor analysis. Limitations: Cross-sectional design; sample heterogeneity Conclusions: Among general hospital inpatients, features of depression and demoralization are independent, with the exception of low mood and self-reproach. The identification of symptom groupings around entrapment and helplessness may provide a basis for a dimensional characterization of depressed/demoralized patients, with possible implications for treatment

    Measurement of physical activity, sedentary time and continuous glucose concentrations: novel techniques for behavioural profiling

    Get PDF
    STUDY 1. INTRODUCTION. Insufficient physical activity is a major risk factor for developing type 2 diabetes. Using isotemporal substitution models, the influence of replacing modest durations of sedentary time with physical activity on diabetes risk scores can be studied. The aims of this study were to examine the relationship between diabetes risk scores, sedentary time and physical activity measured using wrist worn accelerometry, and to model the changes in risk scores by reallocating movement behaviours from lower to a higher intensity. METHODS. Data from 251 (93 males; aged 56.7 ± 8.8) participants from a mixed ethnicity cohort from Leicestershire, UK were selected for analysis. The relationship between diabetes risk (using the Leicester Diabetes Risk Assessment Score), physical activity and sedentary time was identified using multiple linear regressions and isotemporal substitution analysis. Models were calculated for main effects and also adjusted for peak oxygen uptake (VO2) and accelerometer wear time. RESULTS. Both unadjusted and adjusted models revealed that diabetes risk was inversely related to sedentary time, and positively related to light and moderate to vigorous physical activity (MVPA) (p < 0.0005). Unadjusted, the replacement of sedentary time with 10 minutes of either light or MVPA resulted in a reduction in diabetes risk score of −0.22 and −0.54, respectively. There was an eight to nine times greater reduction in risk for the same MVPA replacement models when the least active participants were compared to the pooled analysis (3.601 unadjusted). CONCLUSION. Diabetes risk is associated with sedentary time and physical activity estimated from wrist worn accelerometry. The replacement of sedentary time with MVPA is most beneficial for the least active individuals. STUDY 2. INTRODUCTION. Most associations between physical behaviours and health are assessed using intensity and duration based estimations; however, individuals accrue physical activity in differing ways and behavioural profiles have been linked with varying cardiometabolic risk factors. The frequency or regularity of behaviour may hold additional relationships with health, but have not been extensively explored. Accelerometers provide researchers with a large stream of raw data to analyse. The aim of this paper was to calculate a novel method of behavioural regularity called sample entropy from wrist worn accelerometry and to ascertain whether there are associations with cardiometabolic risk factors in adults. METHODS. Data from 290 (107 males; aged 57.0 ± 8.8) participants from a mixed ethnicity cohort from Leicestershire, UK were selected for analysis. Entropy scores were calculated using 60-second count data within MATLAB. The relationship between entropy scores, physical activity, sedentary time and cardiometabolic risk factors was identified using multiple linear regressions. Models were calculated for main effects and also adjusted for age, sex, accelerometer wear time and body mass index (BMI). RESULTS. Sample entropy scores were significantly related to high-density lipoprotein (HDL) cholesterol (b = 0.148, p = 0.042), triglycerides (b = −0.293, p = 0.042) and glycated haemoglobin (HbA1c) (b = −0.225, p = 0.006), even after adjustment for confounding variables. Traditional intensity estimates of physical activity were not associated; however, the frequency of breaks in sedentary time were significantly related to entropy scores (b = 0.004, p = 0.002). CONCLUSION. Using a novel measure of signal complexity, associations have been revealed with cardiometabolic risk factors; however further analysis in a larger, more diverse dataset is required to ascertain the utility of this technique within behavioural research and if so, what constitutes typical/average levels of entropy within a population. STUDY 3. INTRODUCTION. Acute physiological changes such as reductions in postprandial glucose excursions have been demonstrated within experimental studies that have compared being physically active to sedentary conditions. However, for this information to be truly useful, the coupling of behaviour and glucose data in a free-living environment needs to be achieved. The aim of the study was to ascertain if there is a relationship between objectively measured physical activity, sedentary time and glucose variability using glucose monitoring in an adult population. METHODS. Data from 29 participants recruited from a mixed gender sample from Leicestershire, UK were selected for analysis. Physical activity, sedentary time and interstitial glucose was measured continuously over 14 days using an accelerometer and the Freestyle Libre flash glucose monitor. Daily time (minutes) spent sedentary, and in light activity and moderate to vigorous physical activity (MVPA) were regressed against glycaemic variability indices including daily mean (average) glucose, standard deviation and mean amplitude of glycaemic excursions (MAGE). Generalised Estimating Equations were calculated between behaviour and glycaemic variability variables. Models were calculated for main effects and also adjusted for age, gender and accelerometer wear time. RESULTS. Physical activity and sedentary time were associated with measures of glucose variability, however low fitness individuals showed a stronger relationship between MVPA and MAGE (MAGE: whole sample b = −0.002, low fitness b = −0.012. Additionally, after adjustment for covariates, sedentary time was positively associated with a higher daily mean glucose (b = 0.001, p = 0.001) and MAGE (b = 0.002, p < 0.0005) for the low fitness group. MVPA was negatively associated with mean glucose (b = −0.004, p < 0.0005) and MAGE (b = −0.012, p < 0.0005); however, standard deviation of glucose was not associated with behaviour of any intensity. The magnitudes of the relationships were small, although participants were non-diabetics and exhibited relatively good glucose control i.e. minimal fluctuations in daily glucose variability. CONCLUSION. This study shows that sedentary time, physical activity and glucose variability are related. Despite supporting the previous laboratory research, it is uncertain whether any changes in glucose will reliably occur in all individuals. MVPA confers the largest reductions in glucose variability indices, yet as one of the few studies to couple behaviour and glucose data, more research is needed on larger and more diverse samples

    Vauvojen unen luokittelu patja-sensorilla ja EKG:lla

    Get PDF
    Infants spend the majority of their time asleep. Although extensive studies have been carried out, the role of sleep for infant cognitive, psychomotor, temperament and developmental outcomes is not clear. The current contradictory results may be due to the limited precision when monitoring infant sleep for prolonged periods of time, from weeks to even months. Sleep-wake cycle can be assessed with sleep questionnaires and actigraphy, but they cannot separate sleep stages. The gold standard for sleep state annotation is polysomnography (PSG), which consist of several signal modalities such as electroencephalogram, electrooculogram, electrocardiogram (ECG), electromyogram, respiration sensor and pulse oximetry. A sleep clinician manually assigns sleep stages for 30 sec epochs based on the visual observation of these signals. Because method is obtrusive and laborious it is not suitable for monitoring long periods. There is, therefore, a need for an automatic and unobtrusive sleep staging approach. In this work, a set of classifiers for infant sleep staging was created and evaluated. The cardiorespiratory and gross body movement signals were used as an input. The different classifiers aim to distinguish between two or more different sleep states. The classifiers were built on a clinical sleep polysomnography data set of 48 infants with ages ranging from 1 week to 18 weeks old (a median of 5 weeks). Respiration and gross body movements were observed using an electromechanical film bed mattress sensor manufactured by Emfit Ltd. ECG of the PSG setup was used for extracting cardiac activity. Signals were preprocessed to remove artefacts and an extensive set of features (N=81) were extracted on which the classifiers were trained. The NREM3 vs other states classifier provided the most accurate results. The median accuracy was 0.822 (IQR: 0.724-0.914). This is comparable to previously published studies on other sleep classifiers, as well as to the level of clinical interrater agreement. Classification methods were confounded by the lack of muscle atonia and amount of gross body movements in REM sleep. The proposed method could be readily applied for home monitoring, as well as for monitoring in neonatal intensive care units.Vauvat nukkuvat suurimman osan vuorokaudesta. Vaikkakin laajasti on tutkittu unen vaikutusta lapsen kognitioon, psykomotoriikkaan, temperamenttiin ja kehitykseen, selkeää kuvaa ja yhtenäistä konsensusta tiedeyhteisössä ei ole saavutettu. Yksi syy tähän on että ei ole olemassa menetelmää, joka soveltuisi jatkuva-aikaiseen ja pitkäkestoiseen unitilan monitorointiin. Vauvojen uni-valve- sykliä voidaan selvittää vanhemmille suunnatuilla kyselyillä ja aktigrafialla, mutta näillä ei voi havaita unitilojen rakennetta. Kliinisenä standardina unitilojen seurannassa on polysomnografia, jossa samanaikaisesti mitataan mm. potilaan elektroenkelografiaa, elektro-okulografiaa, elektrokardiografiaa, electromyografiaa, hengitysinduktiivisesta pletysmografiaa, happisaturaatiota ja hengitysvirtauksia. Kliinikko suorittaa univaiheluokittelun signaaleista näkyvien, vaiheille tyypillisten, hahmojen perusteella. Työläyden ja häiritsevän mittausasetelman takia menetelmä ei sovellu pitkäaikaiseen seurantaan. On tarvetta kehittää tarkoitukseen sopivia automaattisia ja huomaamattomia unenseurantamenetelmiä. Tässä työssä kehitettiin ja testattiin sydämen syke-, hengitys ja liikeanalyysiin perustuvia koneluokittimia vauvojen unitilojen havainnointiin. Luokittimet opetettiin kliinisessa polysomnografiassa kerätyllä datalla 48 vauvasta, joiden ikä vaihteli 1. viikosta 18. viikkoon (mediaani 5 viikkoa). Vauvojen hengitystä ja liikkeitä seurattiin Emfit Oy:n valmistamalla elektromekaaniseen filmiin pohjatuvalla patja-sensorilla. Lisäksi ECG:lla seurattiin sydäntä ja opetuksessa käytettiin lääkärin suorittamaa PSG-pohjaista luokitusta. Esikäsittelyn jälkeen signaaleista laskettiin suuri joukko piirrevektoreita (N=81), joihin luokittelu perustuu. NREM3-univaiheen tunnistus onnistui parhaiten 0.822 mediaani-tarkkuudella ja [0.724,0.914] kvartaaleilla. Tulos on yhtenevä kirjallisuudessa esitettyjen arvojen kanssa ja vastaa kliinikkojen välistä toistettavuutta. Muilla luokittimilla univaiheet sekoituivat keskenään, mikä on oletattavasti selitettävissä aikuisista poikeavalla REM-unen aikaisella lihasjäykkyydellä ja kehon liikkeillä. Työ osoittaa, että menetelmällä voi seurata vauvojen uniluokkien oskillaatiota. Järjestelmää voisi käyttää kotiseurannassa tai vastasyntyneiden teholla unenvalvontaan

    Machine learning for the classification of atrial fibrillation utilizing seismo- and gyrocardiogram

    Get PDF
    A significant number of deaths worldwide are attributed to cardiovascular diseases (CVDs), accounting for approximately one-third of the total mortality in 2019, with an estimated 18 million deaths. The prevalence of CVDs has risen due to the increasing elderly population and improved life expectancy. Consequently, there is an escalating demand for higher-quality healthcare services. Technological advancements, particularly the use of wearable devices for remote patient monitoring, have significantly improved the diagnosis, treatment, and monitoring of CVDs. Atrial fibrillation (AFib), an arrhythmia associated with severe complications and potential fatality, necessitates prolonged monitoring of heart activity for accurate diagnosis and severity assessment. Remote heart monitoring, facilitated by ECG Holter monitors, has become a popular approach in many cardiology clinics. However, in the absence of an ECG Holter monitor, other remote and widely available technologies can prove valuable. The seismo- and gyrocardiogram signals (SCG and GCG) provide information about the mechanical function of the heart, enabling AFib monitoring within or outside clinical settings. SCG and GCG signals can be conveniently recorded using smartphones, which are affordable and ubiquitous in most countries. This doctoral thesis investigates the utilization of signal processing, feature engineering, and supervised machine learning techniques to classify AFib using short SCG and GCG measurements captured by smartphones. Multiple machine learning pipelines are examined, each designed to address specific objectives. The first objective (O1) involves evaluating the performance of supervised machine learning classifiers in detecting AFib using measurements conducted by physicians in a clinical setting. The second objective (O2) is similar to O1, but this time utilizing measurements taken by patients themselves. The third objective (03) explores the performance of machine learning classifiers in detecting acute decompensated heart failure (ADHF) using the same measurements as O1, which were primarily collected for AFib detection. Lastly, the fourth objective (O4) delves into the application of deep neural networks for automated feature learning and classification of AFib. These investigations have shown that AFib detection is achievable by capturing a joint SCG and GCG recording and applying machine learning methods, yielding satisfactory performance outcomes. The primary focus of the examined approaches encompassed (1) feature engineering coupled with supervised classification, and (2) iv automated end-to-end feature learning and classification using deep convolutionalrecurrent neural networks. The key finding from these studies is that SCG and GCG signals reliably capture the heart’s beating pattern, irrespective of the operator. This allows for the detection of irregular rhythm patterns, making this technology suitable for monitoring AFib episodes outside of hospital settings as a remote monitoring solution for individuals suspected to have AFib. This thesis demonstrates the potential of smartphone-based AFib detection using built-in inertial sensors. Notably, a short recording duration of 10 to 60 seconds yields clinically relevant results. However, it is important to recognize that the results for ADHF did not match the state-of-the-art achievements due to the limited availability of ADHF data combined with arrhythmias as well as the lack of a cardiopulmonary exercise test in the measurement setting. Finally, it is important to recognize that SCG and GCG are not intended to replace clinical ECG measurements or long-term ambulatory Holter ECG recordings. Instead, within the scope of our current understanding, they should be regarded as complementary and supplementary technologies for cardiovascular monitoring

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain

    Cardiorespiratory Function in Young Adults With a History of Covid-19 Infection

    Get PDF
    Objective. Respiratory complications may persist several months into the recovery period following COVID-19 infection. This study evaluated respiratory function and oxygen saturation variability between young adults with a history of COVID-19 infection and controls. Associations between cardiorespiratory function with potential biobehavioral correlates of COVID-19 infection were also explored.Methods. 57 adults ages 18 to 65 participated in this study (24 COVID+, 33 Control). Spirometry was used to assess pulmonary function volumes of forced vital capacity (FVC), forced expiratory volume in 1 second (FEV1), FEV1/FVC and peak expiratory flow (PEF). Exhaled nitric oxide (FeNO) was measured using the NiOX VERO, a handheld electrochemical nitric oxide analyzer and taken as a proxy of airway inflammation. Systemic inflammation levels were assessed using salivary concentrations of inflammatory biomarkers. Oxygen saturation variability was quantified via extended continuous oxygen saturation (SpO2) monitoring using linear and nonlinear analyses. Network physiology analysis was conducted to evaluate cardiorespiratory control between SpO2, heart rate (HR), respiratory rate and skin temperature signals measured by continuous ambulatory monitoring with an Equivital EQO2 LifeMonitor. Physical activity levels and sedentary time were assessed using 9-day accelerometry. COVID-19 symptom severity was assessed by participant self-report via questionnaires. Results. No group differences were observed for pulmonary function of FVC (COVID+: 4.22±1.01, C: 4.43±1.06 L, p=.663), FEV1 (COVID+: 3.45±0.72, C: 3.57±0.92 L, p=.865), PEF (COVID+: 349.63±105.54, C: 373.73±140.61 L/min, p=.370), or FeNO (COVID+: 16.61±13.04, C: 20.03±20.11 ppb, p=.285). Linear and nonlinear oxygen saturation variability did not differ between adults with a history of COVID-19 infection and controls with no history of infection (p\u3e0.05). Cardiorespiratory function measured using network analysis of did not differ between recovering COVID-19 individuals and controls (p\u3e0.05). Sedentary time was inversely associated with FEV1 (r=-.392, p=.040), PEF (r=-.579, p=.003), and IL-6 concentrations (r=- .370, p=.049). COVID-19 disease severity was inversely associated with FVC (r=-.461, p=.012) and FEV1 (r=-.365, p=.040). Number of symptoms was inversely associated with FVC (r=-.404, p=.025). Conclusions. Pulmonary function, inflammation levels and oxygen saturation variability were similar between individuals with a history of COVID-19 infection and controls without a history of COVID-19 infection. Network interactions between regulatory components of the cardiorespiratory system were also similar between recovering COVID-19 individuals and controls. Findings suggest that cardiorespiratory function and dynamic control of SpO2 may not be impaired following COVID-19 infection in young adults. Moreover, increased sedentary time and disease severity may have negative effects on pulmonary function in individuals recovering from COVID-19

    Physical fitness among older manual workers

    Get PDF
    corecore