32 research outputs found

    A new perturbation bound for the LDU factorization of diagonally dominant matrices

    Get PDF
    This work introduces a new perturbation bound for the L factor of the LDU factorization of (row) diagonally dominant matrices computed via the column diagonal dominance pivoting strategy. This strategy yields L and U factors which are always well-conditioned and, so, the LDU factorization is guaranteed to be a rank-revealing decomposition. The new bound together with those for the D and U factors in [F. M. Dopico and P. Koev, Numer. Math., 119 (2011), pp. 337– 371] establish that if diagonally dominant matrices are parameterized via their diagonally dominant parts and off-diagonal entries, then tiny relative componentwise perturbations of these parameters produce tiny relative normwise variations of L and U and tiny relative entrywise variations of D when column diagonal dominance pivoting is used. These results will allow us to prove in a follow-up work that such perturbations also lead to strong perturbation bounds for many other problems involving diagonally dominant matrices.Research supported in part by Ministerio de Economía y Competitividad of Spain under grant MTM2012-32542.Publicad

    Relative perturbation theory for diagonally dominant matrices

    Get PDF
    In this paper, strong relative perturbation bounds are developed for a number of linear algebra problems involving diagonally dominant matrices. The key point is to parameterize diagonally dominant matrices using their off-diagonal entries and diagonally dominant parts and to consider small relative componentwise perturbations of these parameters. This allows us to obtain new relative perturbation bounds for the inverse, the solution to linear systems, the symmetric indefinite eigenvalue problem, the singular value problem, and the nonsymmetric eigenvalue problem. These bounds are much stronger than traditional perturbation results, since they are independent of either the standard condition number or the magnitude of eigenvalues/singular values. Together with previously derived perturbation bounds for the LDU factorization and the symmetric positive definite eigenvalue problem, this paper presents a complete and detailed account of relative structured perturbation theory for diagonally dominant matrices.This research was partially supported by the Ministerio de EconomĂ­a y Competitividad of Spain under grant MTM2012-32542.Publicad

    RELATIVE PERTURBATION THEORY FOR DIAGONALLY DOMINANT MATRICES

    Get PDF
    Diagonally dominant matrices arise in many applications. In this work, we exploit the structure of diagonally dominant matrices to provide sharp entrywise relative perturbation bounds. We first generalize the results of Dopico and Koev to provide relative perturbation bounds for the LDU factorization with a well conditioned L factor. We then establish relative perturbation bounds for the inverse that are entrywise and independent of the condition number. This allows us to also present relative perturbation bounds for the linear system Ax=b that are independent of the condition number. Lastly, we continue the work of Ye to provide relative perturbation bounds for the eigenvalues of symmetric indefinite matrices and non-symmetric matrices

    On maximum volume submatrices and cross approximation for symmetric semidefinite and diagonally dominant matrices

    Full text link
    The problem of finding a k×kk \times k submatrix of maximum volume of a matrix AA is of interest in a variety of applications. For example, it yields a quasi-best low-rank approximation constructed from the rows and columns of AA. We show that such a submatrix can always be chosen to be a principal submatrix if AA is symmetric semidefinite or diagonally dominant. Then we analyze the low-rank approximation error returned by a greedy method for volume maximization, cross approximation with complete pivoting. Our bound for general matrices extends an existing result for symmetric semidefinite matrices and yields new error estimates for diagonally dominant matrices. In particular, for doubly diagonally dominant matrices the error is shown to remain within a modest factor of the best approximation error. We also illustrate how the application of our results to cross approximation for functions leads to new and better convergence results

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl

    Computing the singular value decomposition with high relative accuracy

    Get PDF
    AbstractWe analyze when it is possible to compute the singular values and singular vectors of a matrix with high relative accuracy. This means that each computed singular value is guaranteed to have some correct digits, even if the singular values have widely varying magnitudes. This is in contrast to the absolute accuracy provided by conventional backward stable algorithms, which in general only guarantee correct digits in the singular values with large enough magnitudes. It is of interest to compute the tiniest singular values with several correct digits, because in some cases, such as finite element problems and quantum mechanics, it is the smallest singular values that have physical meaning, and should be determined accurately by the data. Many recent papers have identified special classes of matrices where high relative accuracy is possible, since it is not possible in general. The perturbation theory and algorithms for these matrix classes have been quite different, motivating us to seek a common perturbation theory and common algorithm. We provide these in this paper, and show that high relative accuracy is possible in many new cases as well. The briefest way to describe our results is that we can compute the SVD of G to high relative accuracy provided we can accurately factor G=XDYT where D is diagonal and X and Y are any well-conditioned matrices; furthermore, the LDU factorization frequently does the job. We provide many examples of matrix classes permitting such an LDU decomposition

    Fast and accurate con-eigenvalue algorithm for optimal rational approximations

    Full text link
    The need to compute small con-eigenvalues and the associated con-eigenvectors of positive-definite Cauchy matrices naturally arises when constructing rational approximations with a (near) optimally small L∞L^{\infty} error. Specifically, given a rational function with nn poles in the unit disk, a rational approximation with mâ‰Șnm\ll n poles in the unit disk may be obtained from the mmth con-eigenvector of an n×nn\times n Cauchy matrix, where the associated con-eigenvalue λm>0\lambda_{m}>0 gives the approximation error in the L∞L^{\infty} norm. Unfortunately, standard algorithms do not accurately compute small con-eigenvalues (and the associated con-eigenvectors) and, in particular, yield few or no correct digits for con-eigenvalues smaller than the machine roundoff. We develop a fast and accurate algorithm for computing con-eigenvalues and con-eigenvectors of positive-definite Cauchy matrices, yielding even the tiniest con-eigenvalues with high relative accuracy. The algorithm computes the mmth con-eigenvalue in O(m2n)\mathcal{O}(m^{2}n) operations and, since the con-eigenvalues of positive-definite Cauchy matrices decay exponentially fast, we obtain (near) optimal rational approximations in O(n(log⁡ή−1)2)\mathcal{O}(n(\log\delta^{-1})^{2}) operations, where ÎŽ\delta is the approximation error in the L∞L^{\infty} norm. We derive error bounds demonstrating high relative accuracy of the computed con-eigenvalues and the high accuracy of the unit con-eigenvectors. We also provide examples of using the algorithm to compute (near) optimal rational approximations of functions with singularities and sharp transitions, where approximation errors close to machine precision are obtained. Finally, we present numerical tests on random (complex-valued) Cauchy matrices to show that the algorithm computes all the con-eigenvalues and con-eigenvectors with nearly full precision
    corecore