21,551 research outputs found

    A New Perspective on Vertex Connectivity

    Get PDF
    Edge connectivity and vertex connectivity are two fundamental concepts in graph theory. Although by now there is a good understanding of the structure of graphs based on their edge connectivity, our knowledge in the case of vertex connectivity is much more limited. An essential tool in capturing edge connectivity are edge-disjoint spanning trees. The famous results of Tutte and Nash-Williams show that a graph with edge connectivity λ\lambda contains \floor{\lambda/2} edge-disjoint spanning trees. We present connected dominating set (CDS) partition and packing as tools that are analogous to edge-disjoint spanning trees and that help us to better grasp the structure of graphs based on their vertex connectivity. The objective of the CDS partition problem is to partition the nodes of a graph into as many connected dominating sets as possible. The CDS packing problem is the corresponding fractional relaxation, where CDSs are allowed to overlap as long as this is compensated by assigning appropriate weights. CDS partition and CDS packing can be viewed as the counterparts of the well-studied edge-disjoint spanning trees, focusing on vertex disjointedness rather than edge disjointness. We constructively show that every kk-vertex-connected graph with nn nodes has a CDS packing of size Ω(k/logn)\Omega(k/\log n) and a CDS partition of size Ω(k/log5n)\Omega(k/\log^5 n). We prove that the Ω(k/logn)\Omega(k/\log n) CDS packing bound is existentially optimal. Using CDS packing, we show that if vertices of a kk-vertex-connected graph are independently sampled with probability pp, then the graph induced by the sampled vertices has vertex connectivity Ω~(kp2)\tilde{\Omega}(kp^2). Moreover, using our Ω(k/logn)\Omega(k/\log n) CDS packing, we get a store-and-forward broadcast algorithm with optimal throughput in the networking model where in each round, each node can send one bounded-size message to all its neighbors

    On the fixed-parameter tractability of the maximum connectivity improvement problem

    Full text link
    In the Maximum Connectivity Improvement (MCI) problem, we are given a directed graph G=(V,E)G=(V,E) and an integer BB and we are asked to find BB new edges to be added to GG in order to maximize the number of connected pairs of vertices in the resulting graph. The MCI problem has been studied from the approximation point of view. In this paper, we approach it from the parameterized complexity perspective in the case of directed acyclic graphs. We show several hardness and algorithmic results with respect to different natural parameters. Our main result is that the problem is W[2]W[2]-hard for parameter BB and it is FPT for parameters VB|V| - B and ν\nu, the matching number of GG. We further characterize the MCI problem with respect to other complementary parameters.Comment: 15 pages, 1 figur

    A R\'enyi entropy perspective on topological order in classical toric code models

    Full text link
    Concepts of information theory are increasingly used to characterize collective phenomena in condensed matter systems, such as the use of entanglement entropies to identify emergent topological order in interacting quantum many-body systems. Here we employ classical variants of these concepts, in particular R\'enyi entropies and their associated mutual information, to identify topological order in classical systems. Like for their quantum counterparts, the presence of topological order can be identified in such classical systems via a universal, subleading contribution to the prevalent volume and boundary laws of the classical R\'enyi entropies. We demonstrate that an additional subleading O(1)O(1) contribution generically arises for all R\'enyi entropies S(n)S^{(n)} with n2n \geq 2 when driving the system towards a phase transition, e.g. into a conventionally ordered phase. This additional subleading term, which we dub connectivity contribution, tracks back to partial subsystem ordering and is proportional to the number of connected parts in a given bipartition. Notably, the Levin-Wen summation scheme -- typically used to extract the topological contribution to the R\'enyi entropies -- does not fully eliminate this additional connectivity contribution in this classical context. This indicates that the distillation of topological order from R\'enyi entropies requires an additional level of scrutiny to distinguish topological from non-topological O(1)O(1) contributions. This is also the case for quantum systems, for which we discuss which entropies are sensitive to these connectivity contributions. We showcase these findings by extensive numerical simulations of a classical variant of the toric code model, for which we study the stability of topological order in the presence of a magnetic field and at finite temperatures from a R\'enyi entropy perspective.Comment: 17 pages, 19 figure

    Edge-Orders

    Get PDF
    Canonical orderings and their relatives such as st-numberings have been used as a key tool in algorithmic graph theory for the last decades. Recently, a unifying concept behind all these orders has been shown: they can be described by a graph decomposition into parts that have a prescribed vertex-connectivity. Despite extensive interest in canonical orderings, no analogue of this unifying concept is known for edge-connectivity. In this paper, we establish such a concept named edge-orders and show how to compute (1,1)-edge-orders of 2-edge-connected graphs as well as (2,1)-edge-orders of 3-edge-connected graphs in linear time, respectively. While the former can be seen as the edge-variants of st-numberings, the latter are the edge-variants of Mondshein sequences and non-separating ear decompositions. The methods that we use for obtaining such edge-orders differ considerably in almost all details from the ones used for their vertex-counterparts, as different graph-theoretic constructions are used in the inductive proof and standard reductions from edge- to vertex-connectivity are bound to fail. As a first application, we consider the famous Edge-Independent Spanning Tree Conjecture, which asserts that every k-edge-connected graph contains k rooted spanning trees that are pairwise edge-independent. We illustrate the impact of the above edge-orders by deducing algorithms that construct 2- and 3-edge independent spanning trees of 2- and 3-edge-connected graphs, the latter of which improves the best known running time from O(n^2) to linear time

    Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications (Extended Version)

    Get PDF
    Although the ``scale-free'' literature is large and growing, it gives neither a precise definition of scale-free graphs nor rigorous proofs of many of their claimed properties. In fact, it is easily shown that the existing theory has many inherent contradictions and verifiably false claims. In this paper, we propose a new, mathematically precise, and structural definition of the extent to which a graph is scale-free, and prove a series of results that recover many of the claimed properties while suggesting the potential for a rich and interesting theory. With this definition, scale-free (or its opposite, scale-rich) is closely related to other structural graph properties such as various notions of self-similarity (or respectively, self-dissimilarity). Scale-free graphs are also shown to be the likely outcome of random construction processes, consistent with the heuristic definitions implicit in existing random graph approaches. Our approach clarifies much of the confusion surrounding the sensational qualitative claims in the scale-free literature, and offers rigorous and quantitative alternatives.Comment: 44 pages, 16 figures. The primary version is to appear in Internet Mathematics (2005
    corecore