1,977 research outputs found

    A "Sidewinding" Locomotion Gait for Hyper-Redundant Robots

    Get PDF
    This paper considers the kinematics of a novel form of hyper-redundant mobile robot locomotion which is analogous to the 'sidewinding' locomotion of desert snakes. This form of locomotion can be generated by a repetitive travel wave of mechanism bending. Using a continuous backbone curve model, we develop algorithms which enable travel in a uniform direction as well as changes in direction

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics

    A recurrent neural network applied to optimal motion control of mobile robots with physical constraints

    Get PDF
    Conventional solutions, such as the conventional recurrent neural network (CRNN) and gradient recurrent neural network (GRNN), for the motion control of mobile robots in the unified framework of recurrent neural network (RNN) are difficult to simultaneously consider both criteria optimization and physical constraints. The limitation of the RNN solution may lead to the damage of mobile robots for exceeding physical constraints during the task execution. To overcome this limitation, this paper proposes a novel inequality and equality constrained optimization RNN (IECORNN) to handle the motion control of mobile robots. Firstly, the real-time motion control problem with both criteria optimization and physical constraints is skillfully converted to a real-time equality system by leveraging the Lagrange multiplier rule. Then, the detailed design process for the proposed IECORNN is presented together with the neural network architecture developed. Afterward, theoretical analyses on the motion control problem conversion equivalence, global stability, and exponential convergence property are rigorously provided. Finally, two numerical simulation verifications and extensive comparisons with other existing RNNs, e.g., the CRNN and the GRNN, based on the mobile robot for two different path-tracking applications sufficiently demonstrate the effectiveness and superiority of the proposed IECORNN for the real-time motion control of mobile robots with both criteria optimization and physical constraints. This work makes progresses in both theory as well as practice, and fills the vacancy in the unified framework of RNN in motion control of mobile robots

    Novel joint-drift-free scheme at acceleration level for robotic redundancy resolution with tracking error theoretically eliminated

    Get PDF
    In this article, three acceleration-level joint-drift-free (ALJDF) schemes for kinematic control of redundant manipulators are proposed and analyzed from perspectives of dynamics and kinematics with the corresponding tracking error analyses. First, the existing ALJDF schemes for kinematic control of redundant manipulators are systematized into a generalized acceleration-level joint-drift-free scheme with a paradox pointing out the theoretical existence of the velocity error related to joint drift. Second, to remedy the deficiency of the existing solutions, a novel acceleration-level joint-drift-free (NALJDF) scheme is proposed to decouple Cartesian space error from joint space with the tracking error theoretically eliminated. Third, in consideration of the uncertainty at the dynamics level, a multi-index optimization acceleration-level joint-drift-free scheme is presented to reveal the influence of dynamics factors on the redundant manipulator control. Afterwards, theoretical analyses are provided to prove the stability and feasibility of the corresponding dynamic neural network with the tracking error deduced. Then, computer simulations, performance comparisons, and physical experiments on different redundant manipulators synthesized by the proposed schemes are conducted to demonstrate the high performance and superiority of the NALJDF scheme and the influence of dynamics parameters on robot control. This work is of great significance to enhance the product quality and production efficiency in industrial production

    A safe and energy efficient robotic system for industrial automatic tests on domestic appliances: Problem statement and proof of concept

    Get PDF
    In this paper, the design and the development of a robotic platform conceived to perform accelerated life tests on a newly manufactured domestic appliances is presented. The proposed system aims at improving the safety of human operators that share the workspace with the robotic platform which is a common scenario of test laboratories. A deep learning algorithm is used for the human detection and pose estimation, while the integration between a conventional motion planning algorithm with a fast 3D collision checker has been implemented as a global planner plugin for the ROS navigation stack. With the twofold objective of improving safety and saving energy in the battery-powered mobile manipulator used in this project, the problem of minimizing the overall kinetic energy is addressed through a properly designed task priority controller, in which the manipulator inertia matrix is used to weight the joint speeds while satisfying multiple robotic tasks according to a hierarchy designed to interact with the appliances while preserving the safety of the human operators. Simulations are carried out to evaluate the overall control architecture and preliminary results indicate the effectiveness of the developed system in the test laboratory floors

    Cellular Decomposition for Non-repetitive Coverage Task with Minimum Discontinuities

    Full text link
    A mechanism to derive non-repetitive coverage path solutions with a proven minimal number of discontinuities is proposed in this work, with the aim to avoid unnecessary, costly end effector lift-offs for manipulators. The problem is motivated by the automatic polishing of an object. Due to the non-bijective mapping between the workspace and the joint-space, a continuous coverage path in the workspace may easily be truncated in the joint-space, incuring undesirable end effector lift-offs. Inversely, there may be multiple configuration choices to cover the same point of a coverage path through the solution of the Inverse Kinematics. The solution departs from the conventional local optimisation of the coverage path shape in task space, or choosing appropriate but possibly disconnected configurations, to instead explicitly explore the leaast number of discontinuous motions through the analysis of the structure of valid configurations in joint-space. The two novel contributions of this paper include proof that the least number of path discontinuities is predicated on the surrounding environment, independent from the choice of the actual coverage path; thus has a minimum. And an efficient finite cellular decomposition method to optimally divide the workspace into the minimum number of cells, each traversable without discontinuties by any arbitrary coverage path within. Extensive simulation examples and real-world results on a 5 DoF manipulator are presented to prove the validity of the proposed strategy in realistic settings
    • …
    corecore