8,746 research outputs found

    On Detecting Faces And Classifying Facial Races With Partial Occlusions And Pose Variations

    Get PDF
    In this dissertation, we present our contributions in face detection and facial race classification. Face detection in unconstrained images is a traditional problem in computer vision community. Challenges still remain. In particular, the detection of partially occluded faces with pose variations has not been well addressed. In the first part of this dissertation, our contributions are three-fold. First, we introduce our four image datasets consisting of large-scale labeled face dataset, noisy large-scale labeled non-face dataset, CrowdFaces dataset, and CrowdNonFaces dataset intended to be used for face detection training. Second, we improve Viola-Jones (VJ) face detection results by first training a Convolutional Neural Network (CNN) model on our noisy datasets. We show our improvement over the VJ face detector on AFW face detection benchmark dataset. However, existing partial occluded face detection methods require training several models, computing hand-crafted features, or both. Hence, we thirdly propose our Large-Scale Deep Learning (LSDL), a method that does not require training several CNN models or hand-crafted features computations to detect faces. Our LSDL face detector is trained on a single CNN model to detect unconstrained multi-view partially occluded and non-partially occluded faces. The model is trained with a large number of face training examples that cover most partial occlusions and non-partial occlusions facial appearances. The LSDL face detection method is achieved by selecting detection windows with the highest confidence scores using a threshold. Our evaluation results show that our LSDL method achieves the best performance on AFW dataset and a comparable performance on FDDB dataset among state-of-the-art face detection methods without manually extending or adjusting the square detection bounding boxes. Many biometrics and security systems use facial information to obtain an individual identification and recognition. Classifying a race from a face image can provide a strong hint to search for facial identity and criminal identification. Current facial race classification methods are confined only to constrained non-partially occluded frontal faces. Challenges remain under unconstrained environments such as partial occlusions and pose variations, low illuminations, and small scales. In the second part of the dissertation, we propose a CNN model to classify facial races with partial occlusions and pose variations. The proposed model is trained using a broad and balanced racial distributed face image dataset. The model is trained on four major human races, Caucasian, Indian, Mongolian, and Negroid. Our model is evaluated against the state-of-the-art methods on a constrained face test dataset. Also, an evaluation of the proposed model and human performance is conducted and compared on our new unconstrained facial race benchmark (CIMN) dataset. Our results show that our model achieves 95.1% of race classification accuracy in the constrained environment. Furthermore, the model achieves a comparable accuracy of race classification compared to human performance on the current challenges in the unconstrained environment

    Occlusion Coherence: Detecting and Localizing Occluded Faces

    Full text link
    The presence of occluders significantly impacts object recognition accuracy. However, occlusion is typically treated as an unstructured source of noise and explicit models for occluders have lagged behind those for object appearance and shape. In this paper we describe a hierarchical deformable part model for face detection and landmark localization that explicitly models part occlusion. The proposed model structure makes it possible to augment positive training data with large numbers of synthetically occluded instances. This allows us to easily incorporate the statistics of occlusion patterns in a discriminatively trained model. We test the model on several benchmarks for landmark localization and detection including challenging new data sets featuring significant occlusion. We find that the addition of an explicit occlusion model yields a detection system that outperforms existing approaches for occluded instances while maintaining competitive accuracy in detection and landmark localization for unoccluded instances

    Extreme 3D Face Reconstruction: Seeing Through Occlusions

    Full text link
    Existing single view, 3D face reconstruction methods can produce beautifully detailed 3D results, but typically only for near frontal, unobstructed viewpoints. We describe a system designed to provide detailed 3D reconstructions of faces viewed under extreme conditions, out of plane rotations, and occlusions. Motivated by the concept of bump mapping, we propose a layered approach which decouples estimation of a global shape from its mid-level details (e.g., wrinkles). We estimate a coarse 3D face shape which acts as a foundation and then separately layer this foundation with details represented by a bump map. We show how a deep convolutional encoder-decoder can be used to estimate such bump maps. We further show how this approach naturally extends to generate plausible details for occluded facial regions. We test our approach and its components extensively, quantitatively demonstrating the invariance of our estimated facial details. We further provide numerous qualitative examples showing that our method produces detailed 3D face shapes in viewing conditions where existing state of the art often break down.Comment: Accepted to CVPR'18. Previously titled: "Extreme 3D Face Reconstruction: Looking Past Occlusions

    Recognition of nonmanual markers in American Sign Language (ASL) using non-parametric adaptive 2D-3D face tracking

    Full text link
    This paper addresses the problem of automatically recognizing linguistically significant nonmanual expressions in American Sign Language from video. We develop a fully automatic system that is able to track facial expressions and head movements, and detect and recognize facial events continuously from video. The main contributions of the proposed framework are the following: (1) We have built a stochastic and adaptive ensemble of face trackers to address factors resulting in lost face track; (2) We combine 2D and 3D deformable face models to warp input frames, thus correcting for any variation in facial appearance resulting from changes in 3D head pose; (3) We use a combination of geometric features and texture features extracted from a canonical frontal representation. The proposed new framework makes it possible to detect grammatically significant nonmanual expressions from continuous signing and to differentiate successfully among linguistically significant expressions that involve subtle differences in appearance. We present results that are based on the use of a dataset containing 330 sentences from videos that were collected and linguistically annotated at Boston University

    Face recognition technologies for evidential evaluation of video traces

    Get PDF
    Human recognition from video traces is an important task in forensic investigations and evidence evaluations. Compared with other biometric traits, face is one of the most popularly used modalities for human recognition due to the fact that its collection is non-intrusive and requires less cooperation from the subjects. Moreover, face images taken at a long distance can still provide reasonable resolution, while most biometric modalities, such as iris and fingerprint, do not have this merit. In this chapter, we discuss automatic face recognition technologies for evidential evaluations of video traces. We first introduce the general concepts in both forensic and automatic face recognition , then analyse the difficulties in face recognition from videos . We summarise and categorise the approaches for handling different uncontrollable factors in difficult recognition conditions. Finally we discuss some challenges and trends in face recognition research in both forensics and biometrics . Given its merits tested in many deployed systems and great potential in other emerging applications, considerable research and development efforts are expected to be devoted in face recognition in the near future
    • …
    corecore