11,673 research outputs found

    Convex Formulation of Multiple Instance Learning from Positive and Unlabeled Bags

    Full text link
    Multiple instance learning (MIL) is a variation of traditional supervised learning problems where data (referred to as bags) are composed of sub-elements (referred to as instances) and only bag labels are available. MIL has a variety of applications such as content-based image retrieval, text categorization and medical diagnosis. Most of the previous work for MIL assume that the training bags are fully labeled. However, it is often difficult to obtain an enough number of labeled bags in practical situations, while many unlabeled bags are available. A learning framework called PU learning (positive and unlabeled learning) can address this problem. In this paper, we propose a convex PU learning method to solve an MIL problem. We experimentally show that the proposed method achieves better performance with significantly lower computational costs than an existing method for PU-MIL

    A Robust AUC Maximization Framework with Simultaneous Outlier Detection and Feature Selection for Positive-Unlabeled Classification

    Full text link
    The positive-unlabeled (PU) classification is a common scenario in real-world applications such as healthcare, text classification, and bioinformatics, in which we only observe a few samples labeled as "positive" together with a large volume of "unlabeled" samples that may contain both positive and negative samples. Building robust classifier for the PU problem is very challenging, especially for complex data where the negative samples overwhelm and mislabeled samples or corrupted features exist. To address these three issues, we propose a robust learning framework that unifies AUC maximization (a robust metric for biased labels), outlier detection (for excluding wrong labels), and feature selection (for excluding corrupted features). The generalization error bounds are provided for the proposed model that give valuable insight into the theoretical performance of the method and lead to useful practical guidance, e.g., to train a model, we find that the included unlabeled samples are sufficient as long as the sample size is comparable to the number of positive samples in the training process. Empirical comparisons and two real-world applications on surgical site infection (SSI) and EEG seizure detection are also conducted to show the effectiveness of the proposed model

    Understanding and Monitoring Human Trafficking via Social Sensors: A Sociological Approach

    Full text link
    Human trafficking is a serious social problem, and it is challenging mainly because of its difficulty in collecting and organizing related information. With the increasing popularity of social media platforms, it provides us a novel channel to tackle the problem of human trafficking through detecting and analyzing a large amount of human trafficking related information. Existing supervised learning methods cannot be directly applied to this problem due to the distinct characteristics of the social media data. First, the short, noisy, and unstructured textual information makes traditional learning algorithms less effective in detecting human trafficking related tweets. Second, complex social interactions lead to a high-dimensional feature space and thus present great computational challenges. In the meanwhile, social sciences theories such as homophily have been well established and achieved success in various social media mining applications. Motivated by the sociological findings, in this paper, we propose to investigate whether the Network Structure Information (NSI) could be potentially helpful for the human trafficking problem. In particular, a novel mathematical optimization framework is proposed to integrate the network structure into content modeling. Experimental results on a real-world dataset demonstrate the effectiveness of our proposed framework in detecting human trafficking related information.Comment: 8 pages, 3 figure

    Combination of multiple Deep Learning architectures for Offensive Language Detection in Tweets

    Full text link
    This report contains the details regarding our submission to the OffensEval 2019 (SemEval 2019 - Task 6). The competition was based on the Offensive Language Identification Dataset. We first discuss the details of the classifier implemented and the type of input data used and pre-processing performed. We then move onto critically evaluating our performance. We have achieved a macro-average F1-score of 0.76, 0.68, 0.54, respectively for Task a, Task b, and Task c, which we believe reflects on the level of sophistication of the models implemented. Finally, we will be discussing the difficulties encountered and possible improvements for the future

    Robust sketching for multiple square-root LASSO problems

    Full text link
    Many learning tasks, such as cross-validation, parameter search, or leave-one-out analysis, involve multiple instances of similar problems, each instance sharing a large part of learning data with the others. We introduce a robust framework for solving multiple square-root LASSO problems, based on a sketch of the learning data that uses low-rank approximations. Our approach allows a dramatic reduction in computational effort, in effect reducing the number of observations from mm (the number of observations to start with) to kk (the number of singular values retained in the low-rank model), while not sacrificing---sometimes even improving---the statistical performance. Theoretical analysis, as well as numerical experiments on both synthetic and real data, illustrate the efficiency of the method in large scale applications

    Fair Classification and Social Welfare

    Full text link
    Now that machine learning algorithms lie at the center of many resource allocation pipelines, computer scientists have been unwittingly cast as partial social planners. Given this state of affairs, important questions follow. What is the relationship between fairness as defined by computer scientists and notions of social welfare? In this paper, we present a welfare-based analysis of classification and fairness regimes. We translate a loss minimization program into a social welfare maximization problem with a set of implied welfare weights on individuals and groups--weights that can be analyzed from a distribution justice lens. In the converse direction, we ask what the space of possible labelings is for a given dataset and hypothesis class. We provide an algorithm that answers this question with respect to linear hyperplanes in Rd\mathbb{R}^d that runs in O(ndd)O(n^dd). Our main findings on the relationship between fairness criteria and welfare center on sensitivity analyses of fairness-constrained empirical risk minimization programs. We characterize the ranges of Δϵ\Delta \epsilon perturbations to a fairness parameter ϵ\epsilon that yield better, worse, and neutral outcomes in utility for individuals and by extension, groups. We show that applying more strict fairness criteria that are codified as parity constraints, can worsen welfare outcomes for both groups. More generally, always preferring "more fair" classifiers does not abide by the Pareto Principle---a fundamental axiom of social choice theory and welfare economics. Recent work in machine learning has rallied around these notions of fairness as critical to ensuring that algorithmic systems do not have disparate negative impact on disadvantaged social groups. By showing that these constraints often fail to translate into improved outcomes for these groups, we cast doubt on their effectiveness as a means to ensure justice.Comment: 23 pages, 2 figure

    Learning with Inadequate and Incorrect Supervision

    Full text link
    Practically, we are often in the dilemma that the labeled data at hand are inadequate to train a reliable classifier, and more seriously, some of these labeled data may be mistakenly labeled due to the various human factors. Therefore, this paper proposes a novel semi-supervised learning paradigm that can handle both label insufficiency and label inaccuracy. To address label insufficiency, we use a graph to bridge the data points so that the label information can be propagated from the scarce labeled examples to unlabeled examples along the graph edges. To address label inaccuracy, Graph Trend Filtering (GTF) and Smooth Eigenbase Pursuit (SEP) are adopted to filter out the initial noisy labels. GTF penalizes the l_0 norm of label difference between connected examples in the graph and exhibits better local adaptivity than the traditional l_2 norm-based Laplacian smoother. SEP reconstructs the correct labels by emphasizing the leading eigenvectors of Laplacian matrix associated with small eigenvalues, as these eigenvectors reflect real label smoothness and carry rich class separation cues. We term our algorithm as `Semi-supervised learning under Inadequate and Incorrect Supervision' (SIIS). Thorough experimental results on image classification, text categorization, and speech recognition demonstrate that our SIIS is effective in label error correction, leading to superior performance to the state-of-the-art methods in the presence of label noise and label scarcity

    Triangle Generative Adversarial Networks

    Full text link
    A Triangle Generative Adversarial Network (Δ\Delta-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by only a few paired samples. Δ\Delta-GAN consists of four neural networks, two generators and two discriminators. The generators are designed to learn the two-way conditional distributions between the two domains, while the discriminators implicitly define a ternary discriminative function, which is trained to distinguish real data pairs and two kinds of fake data pairs. The generators and discriminators are trained together using adversarial learning. Under mild assumptions, in theory the joint distributions characterized by the two generators concentrate to the data distribution. In experiments, three different kinds of domain pairs are considered, image-label, image-image and image-attribute pairs. Experiments on semi-supervised image classification, image-to-image translation and attribute-based image generation demonstrate the superiority of the proposed approach.Comment: To appear in NIPS 201

    On Quantifying Qualitative Geospatial Data: A Probabilistic Approach

    Full text link
    Living in the era of data deluge, we have witnessed a web content explosion, largely due to the massive availability of User-Generated Content (UGC). In this work, we specifically consider the problem of geospatial information extraction and representation, where one can exploit diverse sources of information (such as image and audio data, text data, etc), going beyond traditional volunteered geographic information. Our ambition is to include available narrative information in an effort to better explain geospatial relationships: with spatial reasoning being a basic form of human cognition, narratives expressing such experiences typically contain qualitative spatial data, i.e., spatial objects and spatial relationships. To this end, we formulate a quantitative approach for the representation of qualitative spatial relations extracted from UGC in the form of texts. The proposed method quantifies such relations based on multiple text observations. Such observations provide distance and orientation features which are utilized by a greedy Expectation Maximization-based (EM) algorithm to infer a probability distribution over predefined spatial relationships; the latter represent the quantified relationships under user-defined probabilistic assumptions. We evaluate the applicability and quality of the proposed approach using real UGC data originating from an actual travel blog text corpus. To verify the quality of the result, we generate grid-based maps visualizing the spatial extent of the various relations

    A Reduction of the Elastic Net to Support Vector Machines with an Application to GPU Computing

    Full text link
    The past years have witnessed many dedicated open-source projects that built and maintain implementations of Support Vector Machines (SVM), parallelized for GPU, multi-core CPUs and distributed systems. Up to this point, no comparable effort has been made to parallelize the Elastic Net, despite its popularity in many high impact applications, including genetics, neuroscience and systems biology. The first contribution in this paper is of theoretical nature. We establish a tight link between two seemingly different algorithms and prove that Elastic Net regression can be reduced to SVM with squared hinge loss classification. Our second contribution is to derive a practical algorithm based on this reduction. The reduction enables us to utilize prior efforts in speeding up and parallelizing SVMs to obtain a highly optimized and parallel solver for the Elastic Net and Lasso. With a simple wrapper, consisting of only 11 lines of MATLAB code, we obtain an Elastic Net implementation that naturally utilizes GPU and multi-core CPUs. We demonstrate on twelve real world data sets, that our algorithm yields identical results as the popular (and highly optimized) glmnet implementation but is one or several orders of magnitude faster.Comment: 10 page
    • …
    corecore