89,603 research outputs found

    A QPTAS for Maximum Weight Independent Set of Polygons with Polylogarithmically Many Vertices

    Full text link
    The Maximum Weight Independent Set of Polygons problem is a fundamental problem in computational geometry. Given a set of weighted polygons in the 2-dimensional plane, the goal is to find a set of pairwise non-overlapping polygons with maximum total weight. Due to its wide range of applications, the MWISP problem and its special cases have been extensively studied both in the approximation algorithms and the computational geometry community. Despite a lot of research, its general case is not well-understood. Currently the best known polynomial time algorithm achieves an approximation ratio of n^(epsilon) [Fox and Pach, SODA 2011], and it is not even clear whether the problem is APX-hard. We present a (1+epsilon)-approximation algorithm, assuming that each polygon in the input has at most a polylogarithmic number of vertices. Our algorithm has quasi-polynomial running time. We use a recently introduced framework for approximating maximum weight independent set in geometric intersection graphs. The framework has been used to construct a QPTAS in the much simpler case of axis-parallel rectangles. We extend it in two ways, to adapt it to our much more general setting. First, we show that its technical core can be reduced to the case when all input polygons are triangles. Secondly, we replace its key technical ingredient which is a method to partition the plane using only few edges such that the objects stemming from the optimal solution are evenly distributed among the resulting faces and each object is intersected only a few times. Our new procedure for this task is not more complex than the original one, and it can handle the arising difficulties due to the arbitrary angles of the polygons. Note that already this obstacle makes the known analysis for the above framework fail. Also, in general it is not well understood how to handle this difficulty by efficient approximation algorithms

    The Communication Complexity of Set Intersection and Multiple Equality Testing

    Full text link
    In this paper we explore fundamental problems in randomized communication complexity such as computing Set Intersection on sets of size kk and Equality Testing between vectors of length kk. Sa\u{g}lam and Tardos and Brody et al. showed that for these types of problems, one can achieve optimal communication volume of O(k)O(k) bits, with a randomized protocol that takes O(logk)O(\log^* k) rounds. Aside from rounds and communication volume, there is a \emph{third} parameter of interest, namely the \emph{error probability} perrp_{\mathrm{err}}. It is straightforward to show that protocols for Set Intersection or Equality Testing need to send Ω(k+logperr1)\Omega(k + \log p_{\mathrm{err}}^{-1}) bits. Is it possible to simultaneously achieve optimality in all three parameters, namely O(k+logperr1)O(k + \log p_{\mathrm{err}}^{-1}) communication and O(logk)O(\log^* k) rounds? In this paper we prove that there is no universally optimal algorithm, and complement the existing round-communication tradeoffs with a new tradeoff between rounds, communication, and probability of error. In particular: 1. Any protocol for solving Multiple Equality Testing in rr rounds with failure probability 2E2^{-E} has communication volume Ω(Ek1/r)\Omega(Ek^{1/r}). 2. There exists a protocol for solving Multiple Equality Testing in r+log(k/E)r + \log^*(k/E) rounds with O(k+rEk1/r)O(k + rEk^{1/r}) communication, thereby essentially matching our lower bound and that of Sa\u{g}lam and Tardos. Our original motivation for considering perrp_{\mathrm{err}} as an independent parameter came from the problem of enumerating triangles in distributed (CONGEST\textsf{CONGEST}) networks having maximum degree Δ\Delta. We prove that this problem can be solved in O(Δ/logn+loglogΔ)O(\Delta/\log n + \log\log \Delta) time with high probability 11/poly(n)1-1/\operatorname{poly}(n).Comment: 44 page

    A Finite-Time Cutting Plane Algorithm for Distributed Mixed Integer Linear Programming

    Get PDF
    Many problems of interest for cyber-physical network systems can be formulated as Mixed Integer Linear Programs in which the constraints are distributed among the agents. In this paper we propose a distributed algorithm to solve this class of optimization problems in a peer-to-peer network with no coordinator and with limited computation and communication capabilities. In the proposed algorithm, at each communication round, agents solve locally a small LP, generate suitable cutting planes, namely intersection cuts and cost-based cuts, and communicate a fixed number of active constraints, i.e., a candidate optimal basis. We prove that, if the cost is integer, the algorithm converges to the lexicographically minimal optimal solution in a finite number of communication rounds. Finally, through numerical computations, we analyze the algorithm convergence as a function of the network size.Comment: 6 pages, 3 figure

    Innovation Pursuit: A New Approach to Subspace Clustering

    Full text link
    In subspace clustering, a group of data points belonging to a union of subspaces are assigned membership to their respective subspaces. This paper presents a new approach dubbed Innovation Pursuit (iPursuit) to the problem of subspace clustering using a new geometrical idea whereby subspaces are identified based on their relative novelties. We present two frameworks in which the idea of innovation pursuit is used to distinguish the subspaces. Underlying the first framework is an iterative method that finds the subspaces consecutively by solving a series of simple linear optimization problems, each searching for a direction of innovation in the span of the data potentially orthogonal to all subspaces except for the one to be identified in one step of the algorithm. A detailed mathematical analysis is provided establishing sufficient conditions for iPursuit to correctly cluster the data. The proposed approach can provably yield exact clustering even when the subspaces have significant intersections. It is shown that the complexity of the iterative approach scales only linearly in the number of data points and subspaces, and quadratically in the dimension of the subspaces. The second framework integrates iPursuit with spectral clustering to yield a new variant of spectral-clustering-based algorithms. The numerical simulations with both real and synthetic data demonstrate that iPursuit can often outperform the state-of-the-art subspace clustering algorithms, more so for subspaces with significant intersections, and that it significantly improves the state-of-the-art result for subspace-segmentation-based face clustering
    corecore