15,056 research outputs found

    Joint segmentation of color and depth data based on splitting and merging driven by surface fitting

    Get PDF
    This paper proposes a segmentation scheme based on the joint usage of color and depth data together with a 3D surface estimation scheme. Firstly a set of multi-dimensional vectors is built from color, geometry and surface orientation information. Normalized cuts spectral clustering is then applied in order to recursively segment the scene in two parts thus obtaining an over-segmentation. This procedure is followed by a recursive merging stage where close segments belonging to the same object are joined together. At each step of both procedures a NURBS model is fitted on the computed segments and the accuracy of the fitting is used as a measure of the plausibility that a segment represents a single surface or object. By comparing the accuracy to the one at the previous step, it is possible to determine if each splitting or merging operation leads to a better scene representation and consequently whether to perform it or not. Experimental results show how the proposed method provides an accurate and reliable segmentation

    Segmentation and semantic labelling of RGBD data with convolutional neural networks and surface fitting

    Get PDF
    We present an approach for segmentation and semantic labelling of RGBD data exploiting together geometrical cues and deep learning techniques. An initial over-segmentation is performed using spectral clustering and a set of non-uniform rational B-spline surfaces is fitted on the extracted segments. Then a convolutional neural network (CNN) receives in input colour and geometry data together with surface fitting parameters. The network is made of nine convolutional stages followed by a softmax classifier and produces a vector of descriptors for each sample. In the next step, an iterative merging algorithm recombines the output of the over-segmentation into larger regions matching the various elements of the scene. The couples of adjacent segments with higher similarity according to the CNN features are candidate to be merged and the surface fitting accuracy is used to detect which couples of segments belong to the same surface. Finally, a set of labelled segments is obtained by combining the segmentation output with the descriptors from the CNN. Experimental results show how the proposed approach outperforms state-of-the-art methods and provides an accurate segmentation and labelling

    Superquadrics for segmentation and modeling range data

    Get PDF
    We present a novel approach to reliable and efficient recovery of part-descriptions in terms of superquadric models from range data. We show that superquadrics can directly be recovered from unsegmented data, thus avoiding any presegmentation steps (e.g., in terms of surfaces). The approach is based on the recover-andselect paradigm. We present several experiments on real and synthetic range images, where we demonstrate the stability of the results with respect to viewpoint and noise

    Extracting 3D parametric curves from 2D images of Helical objects

    Get PDF
    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively
    • …
    corecore