24,313 research outputs found

    Heuristic Ternary Error-Correcting Output Codes Via Weight Optimization and Layered Clustering-Based Approach

    Full text link
    One important classifier ensemble for multiclass classification problems is Error-Correcting Output Codes (ECOCs). It bridges multiclass problems and binary-class classifiers by decomposing multiclass problems to a serial binary-class problems. In this paper, we present a heuristic ternary code, named Weight Optimization and Layered Clustering-based ECOC (WOLC-ECOC). It starts with an arbitrary valid ECOC and iterates the following two steps until the training risk converges. The first step, named Layered Clustering based ECOC (LC-ECOC), constructs multiple strong classifiers on the most confusing binary-class problem. The second step adds the new classifiers to ECOC by a novel Optimized Weighted (OW) decoding algorithm, where the optimization problem of the decoding is solved by the cutting plane algorithm. Technically, LC-ECOC makes the heuristic training process not blocked by some difficult binary-class problem. OW decoding guarantees the non-increase of the training risk for ensuring a small code length. Results on 14 UCI datasets and a music genre classification problem demonstrate the effectiveness of WOLC-ECOC

    A new Bayesian ensemble of trees classifier for identifying multi-class labels in satellite images

    Full text link
    Classification of satellite images is a key component of many remote sensing applications. One of the most important products of a raw satellite image is the classified map which labels the image pixels into meaningful classes. Though several parametric and non-parametric classifiers have been developed thus far, accurate labeling of the pixels still remains a challenge. In this paper, we propose a new reliable multiclass-classifier for identifying class labels of a satellite image in remote sensing applications. The proposed multiclass-classifier is a generalization of a binary classifier based on the flexible ensemble of regression trees model called Bayesian Additive Regression Trees (BART). We used three small areas from the LANDSAT 5 TM image, acquired on August 15, 2009 (path/row: 08/29, L1T product, UTM map projection) over Kings County, Nova Scotia, Canada to classify the land-use. Several prediction accuracy and uncertainty measures have been used to compare the reliability of the proposed classifier with the state-of-the-art classifiers in remote sensing.Comment: 31 pages, 6 figures, 4 table

    META-DES.Oracle: Meta-learning and feature selection for ensemble selection

    Full text link
    The key issue in Dynamic Ensemble Selection (DES) is defining a suitable criterion for calculating the classifiers' competence. There are several criteria available to measure the level of competence of base classifiers, such as local accuracy estimates and ranking. However, using only one criterion may lead to a poor estimation of the classifier's competence. In order to deal with this issue, we have proposed a novel dynamic ensemble selection framework using meta-learning, called META-DES. An important aspect of the META-DES framework is that multiple criteria can be embedded in the system encoded as different sets of meta-features. However, some DES criteria are not suitable for every classification problem. For instance, local accuracy estimates may produce poor results when there is a high degree of overlap between the classes. Moreover, a higher classification accuracy can be obtained if the performance of the meta-classifier is optimized for the corresponding data. In this paper, we propose a novel version of the META-DES framework based on the formal definition of the Oracle, called META-DES.Oracle. The Oracle is an abstract method that represents an ideal classifier selection scheme. A meta-feature selection scheme using an overfitting cautious Binary Particle Swarm Optimization (BPSO) is proposed for improving the performance of the meta-classifier. The difference between the outputs obtained by the meta-classifier and those presented by the Oracle is minimized. Thus, the meta-classifier is expected to obtain results that are similar to the Oracle. Experiments carried out using 30 classification problems demonstrate that the optimization procedure based on the Oracle definition leads to a significant improvement in classification accuracy when compared to previous versions of the META-DES framework and other state-of-the-art DES techniques.Comment: Paper published on Information Fusio

    Object Recognition Based on Amounts of Unlabeled Data

    Full text link
    This paper proposes a novel semi-supervised method on object recognition. First, based on Boost Picking, a universal algorithm, Boost Picking Teaching (BPT), is proposed to train an effective binary-classifier just using a few labeled data and amounts of unlabeled data. Then, an ensemble strategy is detailed to synthesize multiple BPT-trained binary-classifiers to be a high-performance multi-classifier. The rationality of the strategy is also analyzed in theory. Finally, the proposed method is tested on two databases, CIFAR-10 and CIFAR-100. Using 2% labeled data and 98% unlabeled data, the accuracies of the proposed method on the two data sets are 78.39% and 50.77% respectively.Comment: 16 pages, 6 figures, 2 table

    A New Approach in Persian Handwritten Letters Recognition Using Error Correcting Output Coding

    Full text link
    Classification Ensemble, which uses the weighed polling of outputs, is the art of combining a set of basic classifiers for generating high-performance, robust and more stable results. This study aims to improve the results of identifying the Persian handwritten letters using Error Correcting Output Coding (ECOC) ensemble method. Furthermore, the feature selection is used to reduce the costs of errors in our proposed method. ECOC is a method for decomposing a multi-way classification problem into many binary classification tasks; and then combining the results of the subtasks into a hypothesized solution to the original problem. Firstly, the image features are extracted by Principal Components Analysis (PCA). After that, ECOC is used for identification the Persian handwritten letters which it uses Support Vector Machine (SVM) as the base classifier. The empirical results of applying this ensemble method using 10 real-world data sets of Persian handwritten letters indicate that this method has better results in identifying the Persian handwritten letters than other ensemble methods and also single classifications. Moreover, by testing a number of different features, this paper found that we can reduce the additional cost in feature selection stage by using this method.Comment: Journal of Advances in Computer Researc

    Estimating the Accuracies of Multiple Classifiers Without Labeled Data

    Full text link
    In various situations one is given only the predictions of multiple classifiers over a large unlabeled test data. This scenario raises the following questions: Without any labeled data and without any a-priori knowledge about the reliability of these different classifiers, is it possible to consistently and computationally efficiently estimate their accuracies? Furthermore, also in a completely unsupervised manner, can one construct a more accurate unsupervised ensemble classifier? In this paper, focusing on the binary case, we present simple, computationally efficient algorithms to solve these questions. Furthermore, under standard classifier independence assumptions, we prove our methods are consistent and study their asymptotic error. Our approach is spectral, based on the fact that the off-diagonal entries of the classifiers' covariance matrix and 3-d tensor are rank-one. We illustrate the competitive performance of our algorithms via extensive experiments on both artificial and real datasets

    Enhancing Multi-Class Classification of Random Forest using Random Vector Functional Neural Network and Oblique Decision Surfaces

    Full text link
    Both neural networks and decision trees are popular machine learning methods and are widely used to solve problems from diverse domains. These two classifiers are commonly used base classifiers in an ensemble framework. In this paper, we first present a new variant of oblique decision tree based on a linear classifier, then construct an ensemble classifier based on the fusion of a fast neural network, random vector functional link network and oblique decision trees. Random Vector Functional Link Network has an elegant closed form solution with extremely short training time. The neural network partitions each training bag (obtained using bagging) at the root level into C subsets where C is the number of classes in the dataset and subsequently, C oblique decision trees are trained on such partitions. The proposed method provides a rich insight into the data by grouping the confusing or hard to classify samples for each class and thus, provides an opportunity to employ fine-grained classification rule over the data. The performance of the ensemble classifier is evaluated on several multi-class datasets where it demonstrates a superior performance compared to other state-of- the-art classifiers.Comment: 8 pages, 5 figure

    Less Is More: A Comprehensive Framework for the Number of Components of Ensemble Classifiers

    Full text link
    The number of component classifiers chosen for an ensemble greatly impacts the prediction ability. In this paper, we use a geometric framework for a priori determining the ensemble size, which is applicable to most of existing batch and online ensemble classifiers. There are only a limited number of studies on the ensemble size examining Majority Voting (MV) and Weighted Majority Voting (WMV). Almost all of them are designed for batch-mode, hardly addressing online environments. Big data dimensions and resource limitations, in terms of time and memory, make determination of ensemble size crucial, especially for online environments. For the MV aggregation rule, our framework proves that the more strong components we add to the ensemble, the more accurate predictions we can achieve. For the WMV aggregation rule, our framework proves the existence of an ideal number of components, which is equal to the number of class labels, with the premise that components are completely independent of each other and strong enough. While giving the exact definition for a strong and independent classifier in the context of an ensemble is a challenging task, our proposed geometric framework provides a theoretical explanation of diversity and its impact on the accuracy of predictions. We conduct a series of experimental evaluations to show the practical value of our theorems and existing challenges.Comment: This is an extended version of the work presented as a short paper at the Conference on Information and Knowledge Management (CIKM), 201

    Novelty Detection in MultiClass Scenarios with Incomplete Set of Class Labels

    Full text link
    We address the problem of novelty detection in multiclass scenarios where some class labels are missing from the training set. Our method is based on the initial assignment of confidence values, which measure the affinity between a new test point and each known class. We first compare the values of the two top elements in this vector of confidence values. In the heart of our method lies the training of an ensemble of classifiers, each trained to discriminate known from novel classes based on some partition of the training data into presumed-known and presumednovel classes. Our final novelty score is derived from the output of this ensemble of classifiers. We evaluated our method on two datasets of images containing a relatively large number of classes - the Caltech-256 and Cifar-100 datasets. We compared our method to 3 alternative methods which represent commonly used approaches, including the one-class SVM, novelty based on k-NN, novelty based on maximal confidence, and the recent KNFST method. The results show a very clear and marked advantage for our method over all alternative methods, in an experimental setup where class labels are missing during training.Comment: 10 page

    Quantum ensembles of quantum classifiers

    Full text link
    Quantum machine learning witnesses an increasing amount of quantum algorithms for data-driven decision making, a problem with potential applications ranging from automated image recognition to medical diagnosis. Many of those algorithms are implementations of quantum classifiers, or models for the classification of data inputs with a quantum computer. Following the success of collective decision making with ensembles in classical machine learning, this paper introduces the concept of quantum ensembles of quantum classifiers. Creating the ensemble corresponds to a state preparation routine, after which the quantum classifiers are evaluated in parallel and their combined decision is accessed by a single-qubit measurement. This framework naturally allows for exponentially large ensembles in which -- similar to Bayesian learning -- the individual classifiers do not have to be trained. As an example, we analyse an exponentially large quantum ensemble in which each classifier is weighed according to its performance in classifying the training data, leading to new results for quantum as well as classical machine learning.Comment: 19 pages, 9 figure
    corecore