39,871 research outputs found

    Adaptive feature thresholding for off-line signature verification

    Get PDF
    This paper introduces Adaptive Feature Thresholding (AFT) which is a novel method of person-dependent off-line signature verification. AFT enhances how a simple image feature of a signature is converted to a binary feature vector by significantly improving its representation in relation to the training signatures. The similarity between signatures is then easily computed from their corresponding binary feature vectors. AFT was tested on the CEDAR and GPDS benchmark datasets, with classification using either a manual or an automatic variant. On the CEDAR dataset we achieved a classification accuracy of 92% for manual and 90% for automatic, while on the GPDS dataset we achieved over 87% and 85% respectively. For both datasets AFT is less complex and requires fewer images features than the existing state of the art methods, while achieving competitive results

    Offline Handwritten Signature Verification - Literature Review

    Full text link
    The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the claimed individual), or a forgery (produced by an impostor). This has demonstrated to be a challenging task, in particular in the offline (static) scenario, that uses images of scanned signatures, where the dynamic information about the signing process is not available. Many advancements have been proposed in the literature in the last 5-10 years, most notably the application of Deep Learning methods to learn feature representations from signature images. In this paper, we present how the problem has been handled in the past few decades, analyze the recent advancements in the field, and the potential directions for future research.Comment: Accepted to the International Conference on Image Processing Theory, Tools and Applications (IPTA 2017

    Signature Verification Approach using Fusion of Hybrid Texture Features

    Full text link
    In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely Wavelet and Local Quantized Patterns (LQP) features, are employed to extract two kinds of transform and statistical based information from signature images. For each writer two separate one-class support vector machines (SVMs) corresponding to each set of LQP and Wavelet features are trained to obtain two different authenticity scores for a given signature. Finally, a score level classifier fusion method is used to integrate the scores obtained from the two one-class SVMs to achieve the verification score. In the proposed method only genuine signatures are used to train the one-class SVMs. The proposed signature verification method has been tested using four different publicly available datasets and the results demonstrate the generality of the proposed method. The proposed system outperforms other existing systems in the literature.Comment: Neural Computing and Applicatio
    • ā€¦
    corecore