37 research outputs found

    Field weakening and sensorless control solutions for synchronous machines applied to electric vehicles.

    Get PDF
    184 p.La polución es uno de los mayores problemas en los países industrializados. Por ello, la electrificación del transporte por carretera está en pleno auge, favoreciendo la investigación y el desarrollo industrial. El desarrollo de sistemas de propulsión eficientes, fiables, compactos y económicos juega un papel fundamental para la introducción del vehículo eléctrico en el mercado.Las máquinas síncronas de imanes permanentes son, a día de hoy la tecnología más empleada en vehículos eléctricos e híbridos por sus características. Sin embargo, al depender del uso de tierras raras, se están investigando alternativas a este tipo de máquina, tales como las máquinas de reluctancia síncrona asistidas por imanes. Para este tipo de máquinas síncronas es necesario desarrollar estrategias de control eficientes y robustas. Las desviaciones de parámetros son comunes en estas máquinas debido a la saturación magnética y a otra serie de factores, tales como tolerancias de fabricación, dependencias en función de la temperatura de operación o envejecimiento. Las técnicas de control convencionales, especialmente las estrategias de debilitamiento de campo dependen, en general, del conocimiento previo de dichos parámetros. Si no son lo suficientemente robustos, pueden producir problemas de control en las regiones de debilitamiento de campo y debilitamiento de campo profundo. En este sentido, esta tesis presenta dos nuevas estrategias de control de debilitamiento de campo híbridas basadas en LUTs y reguladores VCT.Por otro lado, otro requisito indispensable para la industria de la automoción es la detección de faltas y la tolerancia a fallos. En este sentido, se presenta una nueva estrategia de control sensorless basada en una estructura PLL/HFI híbrida que permite al vehículo continuar operando de forma pseudo-óptima ante roturas en el sensor de posición y velocidad de la máquina eléctrica. En esta tesis, ambas propuestas se validan experimentalmente en un sistema de propulsión real para vehículo eléctrico que cuenta con una máquina de reluctancia síncrona asistidas por imanes de 51 kW

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Low-cost, high-resolution, fault-robust position and speed estimation for PMSM drives operating in safety-critical systems

    Get PDF
    In this paper it is shown how to obtain a low-cost, high-resolution and fault-robust position sensing system for permanent magnet synchronous motor drives operating in safety-critical systems, by combining high-frequency signal injection with binary Hall-effect sensors. It is shown that the position error signal obtained via high-frequency signal injection can be merged easily into the quantization-harmonic-decoupling vector tracking observer used to process the Hall-effect sensor signals. The resulting algorithm provides accurate, high-resolution estimates of speed and position throughout the entire speed range; compared to state-of-the-art drives using Hall-effect sensors alone, the low speed performance is greatly improved in healthy conditions and also following position sensor faults. It is envisaged that such a sensing system can be successfully used in applications requiring IEC 61508 SIL 3 or ISO 26262 ASIL D compliance, due to its extremely high mean time to failure and to the very fast recovery of the drive following Hall-effect sensor faults at low speeds. Extensive simulation and experimental results are provided on a 3.7 kW permanent magnet drive

    Experimental study of low speed sensorless control of PMSM drive using high frequency signal injection

    Get PDF
    Conventional techniques for sensorless control of permanent magnet synchronous motor drive (PMSM), which requires information on rotor position, are reviewed, and recent developments in this area are introduced in this paper along with their inherent advantages and drawbacks. The paper presents an improved method for sensorless speed control of PMSM drive with emphasis placed on signal injection method. This signal injection method examines the control performance of sensorless PMSM drive by injecting signal externally and thereby sensing the rotor position. The main objective of this drive system is to have speed control at standstill and low speed regions. Several tests are carried out to demonstrate the ability of proposed models at different operating conditions with the help of simulation results in Matlab/Simulink environment. Simulation results confirm that the proposed sensorless control approach of PMSM can achieve high performance at standstill and low speeds but not at very high speeds. An experimental setup is implemented using a 1HP surface mounted (SM) PMSM and DsPICDEM^TM MCHV-2 development board, to check the validity of simulation result

    Sensorless Passive Control Algorithms for Medium to High Power Synchronous Motor Drives

    Get PDF
    This study is focused on the definition of sensorless algorithms for Surface-Mounted Permanent Magnet Synchronous Motors (SM-PMSM) and Electrically Excited Synchronous Motors (EESM). Even if these types of motors are rather different from a constructive point of view, they have some common issues regarding sensorless drives. Indeed, SM-PMSMs, which are usually used for low-medium power applications, have a low rotor anisotropy, therefore it is complicated to use sensorless active methods (which are based on high-frequency voltage injection), due to the low signal to noise ratio. On the other hand, active methods on high-power EESM have the drawback of high torque ripple. For these reasons, both for SM-PMSM and EESM, it is interesting to define and use sensorless passive algorithms (i.e., based on observers and estimators). The drawback of such algorithms is that their performance deteriorates significantly in the low-speed region. The aim of this thesis is to define a robust sensorless passive algorithm that could work in a wide speed region and that could start the motor from standstill even with a high load torque. The initial objective of the work is to find, among the various algorithms proposed in the technical literature, the most promising one. For this purpose, four different algorithms are selected. They are chosen considering the most recent articles presented in the technical literature on high reputable journals. Since many improvements are proposed in the literature for the different algorithms, the most recent ones are candidates for being the ones with higher performance. Even if the experimental tests of the four different algorithms are shown in the literature, it is difficult to evaluate a priori which offers the best performance. As a matter of facts, for each algorithm different tests are carried out (e.g., different speed and torque profiles). In addition to that, motor sizing and features are different. Moreover, the test bench characteristics can significantly affect sensorless performance. As an example, inverter features and non-linearities (e.g., switching frequency, dead times, parasitic capacitance) and current measures (e.g., noise, linearity, bias) play a key role in the estimation of rotor position. The added value of this thesis is to perform a fair comparison of the four algorithms, performing the same tests with the same test bench. Additional tests are performed on the most performing algorithm. Even if this sensorless technique is already proposed in the technical literature, a methodology for observer gain tuning is not shown, which is proposed, instead, in this thesis. Moreover, the algorithm is enhanced by adding a novel management of direct axis current, which ensures the stability during fast transient from medium-high speed to low speed. The algorithm is tested with different test benches in order to verify the control effectiveness in various operating conditions. As a matter of facts, it is tested at first in the University of Genoa PETRA Lab on two different test benches. The first test bench is composed of two coupled motors, in which the braking motor could realize different torque profiles (linear torque, quadratic torque and constant torque), whereas in the second test bench the motor is coupled with an air compressor, which is a demanding load since high and irregular torque is applied at standstill. After the test at the University of Genoa, the algorithm is implemented in Phase Motion Control and Physis drive and tested on a six-meter diameter fan. Regarding the EESMs, for these type of motor is necessary to estimate the stator flux amplitude and angle. Indeed, the stator angle is usually used to perform the Park transformations in the FOC scheme and the stator flux amplitude is used to control the excitation current. In this study, the RFO is adapted for estimating the stator flux of an EESM. Regarding the control for EESM, it is tested on a simulative model for high-power motors provided by NIDEC ASI and tested on a small-scale test bench at the University of Genoa

    Advanced Modeling of Anisotropic Synchronous Machine Drives for Sensorless Control

    Get PDF
    Synchronous machines are extensively used for home appliances and industrial applications thanks to their fast dynamic response, good overload capability and high energy density. A precise knowledge of the rotor position is required to control efficiently this kind of motors. In most of the applications resolvers or absolute encoders are installed on the rotor shaft. The employment of position sensors leads to significant drawbacks such as the increased size and cost of the system and a lower reliability of the drive, caused by additional hardware and cabling. In sensorless drives motor position is estimated and employed in the machine control. Thus, no position sensor is required by the drive and all the drawbacks entailed by the sensor are eliminated. Moreover, the position estimation could be useful for redundancy in case of system failures. Therefore, position estimation techniques are object of great interest in the electric drives field. Position estimation techniques can be divided into two main categories: methods that are suitable for medium or high speed and techniques suitable for low speed or standstill operations. In the former group the motor position is estimated through a reconstruction of the permanent magnet flux or back electromotive force (back-EMF). In case of synchronous reluctance machines it is possible to reconstruct the extended active flux or back-EMF. Stator voltages and currents measurements are needed for these reconstruction methods. Since these signals amplitude is proportional to the rotor speed, position estimation can be successfully performed only for medium and high speed machine operations. In the low speed range, sensorless schemes exploit the rotor magnetic anisotropy. Thus, position can be estimated only for anisotropic motors, i.e. synchronous reluctance motors (SynRM), permanent magnet assisted synchronous reluctance motors (PMA-SynRM) and interior permanent magnet synchronous motors (IPMSM). The rotor anisotropy is recognized thanks to an high frequency voltage injection in the stator windings. Several injection techniques have been proposed, differing from the signal typology. In particular, high frequency sinusoidal or square-wave carriers are often applied. The position information is usually extracted from the current response through a heterodyning demodulation that entails the use of low pass filters in the position estimator, limiting its dynamic. The aim of the research was proposing a new algorithm to estimate the rotor position from the HF current response, getting rid of the demodulation and its weaknesses. Thus, the ellipse fitting technique has been proposed. Robustness against signal processing delay effects and a reduced number of required filters are the main advantages of this novel approach. The inverse problem related to the ellipse fitting is solved implementing a recursive least squares algorithm. The proposed ellipse fitting technique is not affected by signal processing delay effects, and it requires the tuning of only one parameter, called forgetting factor, making the studied method suitable for industrial application thanks to its minimal setup effort. Besides the ellipse fitting technique for rotor position estimation, two other topics have been studied: - Computation of self-sensing capabilities of synchronous machines. - Online incremental inductances identification for SynRM.Synchronous machines are extensively used for home appliances and industrial applications thanks to their fast dynamic response, good overload capability and high energy density. A precise knowledge of the rotor position is required to control efficiently this kind of motors. In most of the applications resolvers or absolute encoders are installed on the rotor shaft. The employment of position sensors leads to significant drawbacks such as the increased size and cost of the system and a lower reliability of the drive, caused by additional hardware and cabling. In sensorless drives motor position is estimated and employed in the machine control. Thus, no position sensor is required by the drive and all the drawbacks entailed by the sensor are eliminated. Moreover, the position estimation could be useful for redundancy in case of system failures. Therefore, position estimation techniques are object of great interest in the electric drives field. Position estimation techniques can be divided into two main categories: methods that are suitable for medium or high speed and techniques suitable for low speed or standstill operations. In the former group the motor position is estimated through a reconstruction of the permanent magnet flux or back electromotive force (back-EMF). In case of synchronous reluctance machines it is possible to reconstruct the extended active flux or back-EMF. Stator voltages and currents measurements are needed for these reconstruction methods. Since these signals amplitude is proportional to the rotor speed, position estimation can be successfully performed only for medium and high speed machine operations. In the low speed range, sensorless schemes exploit the rotor magnetic anisotropy. Thus, position can be estimated only for anisotropic motors, i.e. synchronous reluctance motors (SynRM), permanent magnet assisted synchronous reluctance motors (PMA-SynRM) and interior permanent magnet synchronous motors (IPMSM). The rotor anisotropy is recognized thanks to an high frequency voltage injection in the stator windings. Several injection techniques have been proposed, differing from the signal typology. In particular, high frequency sinusoidal or square-wave carriers are often applied. The position information is usually extracted from the current response through a heterodyning demodulation that entails the use of low pass filters in the position estimator, limiting its dynamic. The aim of the research was proposing a new algorithm to estimate the rotor position from the HF current response, getting rid of the demodulation and its weaknesses. Thus, the ellipse fitting technique has been proposed. Robustness against signal processing delay effects and a reduced number of required filters are the main advantages of this novel approach. The inverse problem related to the ellipse fitting is solved implementing a recursive least squares algorithm. The proposed ellipse fitting technique is not affected by signal processing delay effects, and it requires the tuning of only one parameter, called forgetting factor, making the studied method suitable for industrial application thanks to its minimal setup effort. Besides the ellipse fitting technique for rotor position estimation, two other topics have been studied: - Computation of self-sensing capabilities of synchronous machines. - Online incremental inductances identification for SynRM

    Sensorless SVPWM-FADTC of a new flux-modulated permanent-magnet wheel motor based on a wide-speed sliding mode observer

    Get PDF
    published_or_final_versio

    Torque Estimation of Synchronous Reluctance Machine using High Frequency Signal Injection

    Get PDF
    Il lavoro analizza due metodi per la stima della coppia prodotta da un motore sincrono a riluttanza, entrambi basati sull'iniezione di un segnale rotante di tensione ad alta frequenza sovrapposto al segnale sincrono alimentante il motore. A partire dal processo dei segnali ad alta frequenza si ottengono le induttanze ad alta freq e attraverso l'equazione di coppia si ottiene la sua stima. Sono state effettuate una simulazione in Simulink e un test sperimentale su un motore commerciale dell'ABB.ope

    Speed Sensorless Control of SPMSM Drives for EVs with a Binary Search Algorithm-Based Phase-Locked Loop

    Full text link
    © 1967-2012 IEEE. This article presents a new method to extract accurate rotor position for the speed sensorless control of surface-mounted permanent-magnet synchronous motors (SPMSMs), based on the back electromotive force (EMF) information. The concept of finite control set-model predictive control is employed, and its cost function is related to the back EMF. An optimal voltage vector is selected from several given voltage vectors by comparing their fitness values. Moreover, the position space is divided into four sectors, and the fitness of each sector boundary is calculated and compared. The rotor position is first located in the sector surrounded by two boundaries that minimize the cost function. Then the selected sector is split into two parts, and the binary search algorithm is applied to reduce the sector area to improve the accuracy of position estimation. To overcome the drawback of the back EMF-based sensorless scheme, an I-f startup method is employed to accelerate the motor to the desired speed. An experiment has been carried out to compare the performance of the proposed method and the conventional phase-locked loop (PLL) in terms of steady-state and transient conditions

    Adaptive control of the interior permanent magnet synchronous motors

    Get PDF
    Thesis contains: pages – 117, drawings – 38, tables – 23. The goal of the of the thesis lies in development of the control methods of the IPMSM with the purpose of its research and improvement of efficiency and performance of the electromechanical system. In this thesis, analytical review of the inductance determination methods for the IPMSM is presented. After that two tests for inductance determination of the interior permanent magnet synchronous motors are proposed, analyzed and experimentally verified. Four methods are proposed to use to obtain static and dynamic inductances from the tests data. Speed and position control algorithms are derived basing on the non saturated model of the motor and its effectiveness was researched by means of experiment and simulation for small saturated motors. After that position control algorithm with adaptation to the mechanical parameters is designed and tested via simulation. Stability is proved using the second Lyapunov method. Derived algorithms provide asymptotic tracking of the controlled coordinates, and decoupling of the direct current component and mechanic coordinate control subsystems.Магістерська дисертація містить: 117 сторінок, 38 рисунків, 23 таблиці. Метою роботи є розробка та розвиток методів керування явнополюсними синхронними двигунами з постійними магнітами, спрямований на покращення ефективності електромеханічної системи. В роботі представлено аналітичний огляд методів визначення індуктивностей IPMSM. Запропоно та експериментально впроваджено два тести для визначення індуктивностей. Отримані в тестах данi пропонується обробити чотирьма методами для отримання значень статичної та динамічної індуктивностей. Розроблено алгоритми керування швидкістю та подоженням на основі моделі, що не враховує насичення. Ефективність алгоритмів досліджена шляхом моделювання та експериментально для двигуна з низьким рівнем насичення. Після цього синтезовано алгоритм керування положенням з адаптацією до механічних параметрів. Стабільність системи доведена за допомогою другого методу Ляпунова. Отримані алгоритми забезпечують асимптотичне відпрацювання контрольованих координат та розв’язку підсистеми керування прямою компонентою струму та підсистемою керування механічними координатами
    corecore