160,261 research outputs found

    Chemical and biological reactions of solidification of peat using ordinary portland cement (OPC) and coal ashes

    Get PDF
    Construction over peat area have often posed a challenge to geotechnical engineers. After decades of study on peat stabilisation techniques, there are still no absolute formulation or guideline that have been established to handle this issue. Some researchers have proposed solidification of peat but a few researchers have also discovered that solidified peat seemed to decrease its strength after a certain period of time. Therefore, understanding the chemical and biological reaction behind the peat solidification is vital to understand the limitation of this treatment technique. In this study, all three types of peat; fabric, hemic and sapric were mixed using Mixing 1 and Mixing 2 formulation which consisted of ordinary Portland cement, fly ash and bottom ash at various ratio. The mixtures of peat-binder-filler were subjected to the unconfined compressive strength (UCS) test, bacterial count test and chemical elemental analysis by using XRF, XRD, FTIR and EDS. Two pattern of strength over curing period were observed. Mixing 1 samples showed a steadily increase in strength over curing period until Day 56 while Mixing 2 showed a decrease in strength pattern at Day 28 and Day 56. Samples which increase in strength steadily have less bacterial count and enzymatic activity with increase quantity of crystallites. Samples with lower strength recorded increase in bacterial count and enzymatic activity with less crystallites. Analysis using XRD showed that pargasite (NaCa2[Mg4Al](Si6Al2)O22(OH)2) was formed in the higher strength samples while in the lower strength samples, pargasite was predicted to be converted into monosodium phosphate and Mg(OH)2 as bacterial consortium was re-activated. The Michaelis�Menten coefficient, Km of the bio-chemical reaction in solidified peat was calculated as 303.60. This showed that reaction which happened during solidification work was inefficient. The kinetics for crystallite formation with enzymatic effect is modelled as 135.42 (1/[S] + 0.44605) which means, when pargasite formed is lower, the amount of enzyme secretes is higher

    Incremental learning with respect to new incoming input attributes

    Get PDF
    Neural networks are generally exposed to a dynamic environment where the training patterns or the input attributes (features) will likely be introduced into the current domain incrementally. This paper considers the situation where a new set of input attributes must be considered and added into the existing neural network. The conventional method is to discard the existing network and redesign one from scratch. This approach wastes the old knowledge and the previous effort. In order to reduce computational time, improve generalization accuracy, and enhance intelligence of the learned models, we present ILIA algorithms (namely ILIA1, ILIA2, ILIA3, ILIA4 and ILIA5) capable of Incremental Learning in terms of Input Attributes. Using the ILIA algorithms, when new input attributes are introduced into the original problem, the existing neural network can be retained and a new sub-network is constructed and trained incrementally. The new sub-network and the old one are merged later to form a new network for the changed problem. In addition, ILIA algorithms have the ability to decide whether the new incoming input attributes are relevant to the output and consistent with the existing input attributes or not and suggest to accept or reject them. Experimental results show that the ILIA algorithms are efficient and effective both for the classification and regression problems

    Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction

    Full text link
    We tackle image question answering (ImageQA) problem by learning a convolutional neural network (CNN) with a dynamic parameter layer whose weights are determined adaptively based on questions. For the adaptive parameter prediction, we employ a separate parameter prediction network, which consists of gated recurrent unit (GRU) taking a question as its input and a fully-connected layer generating a set of candidate weights as its output. However, it is challenging to construct a parameter prediction network for a large number of parameters in the fully-connected dynamic parameter layer of the CNN. We reduce the complexity of this problem by incorporating a hashing technique, where the candidate weights given by the parameter prediction network are selected using a predefined hash function to determine individual weights in the dynamic parameter layer. The proposed network---joint network with the CNN for ImageQA and the parameter prediction network---is trained end-to-end through back-propagation, where its weights are initialized using a pre-trained CNN and GRU. The proposed algorithm illustrates the state-of-the-art performance on all available public ImageQA benchmarks
    corecore