1,037 research outputs found

    Topological phases with parafermions: theory and blueprints

    Full text link
    We concisely review the recent evolution in the study of parafermions -- exotic emergent excitations that generalize Majorana fermions and similarly underpin a host of novel phenomena. First we illustrate the intimate connection between Z_3-symmetric "spin" chains and one-dimensional parafermion lattice models, highlighting how the latter host a topological phase featuring protected edge zero modes. We then tour several blueprints for the laboratory realization of parafermion zero modes -- focusing on quantum Hall/superconductor hybrids, quantum Hall bilayers, and two-dimensional topological insulators -- and describe striking experimental fingerprints that they provide. Finally, we discuss how coupled parafermion arrays in quantum Hall architectures yield topological phases that potentially furnish hardware for a universal, intrinsically decoherence-free quantum computer.Comment: 14 pages, 4 figures; slated for Annual Reviews of Condensed Matter Physic

    Variational neural network ansatz for steady states in open quantum systems

    Full text link
    We present a general variational approach to determine the steady state of open quantum lattice systems via a neural network approach. The steady-state density matrix of the lattice system is constructed via a purified neural network ansatz in an extended Hilbert space with ancillary degrees of freedom. The variational minimization of cost functions associated to the master equation can be performed using a Markov chain Monte Carlo sampling. As a first application and proof-of-principle, we apply the method to the dissipative quantum transverse Ising model.Comment: 6 pages, 4 figures, 54 references, 5 pages of Supplemental Information

    Valence Bond Solids for Quantum Computation

    Get PDF
    Cluster states are entangled multipartite states which enable to do universal quantum computation with local measurements only. We show that these states have a very simple interpretation in terms of valence bond solids, which allows to understand their entanglement properties in a transparent way. This allows to bridge the gap between the differences of the measurement-based proposals for quantum computing, and we will discuss several features and possible extensions

    Quantum-assisted finite-element design optimization

    Get PDF
    Quantum annealing devices such as the ones produced by D-Wave systems are typically used for solving optimization and sampling tasks, and in both academia and industry the characterization of their usefulness is subject to active research. Any problem that can naturally be described as a weighted, undirected graph may be a particularly interesting candidate, since such a problem may be formulated a as quadratic unconstrained binary optimization (QUBO) instance, which is solvable on D-Wave's Chimera graph architecture. In this paper, we introduce a quantum-assisted finite-element method for design optimization. We show that we can minimize a shape-specific quantity, in our case a ray approximation of sound pressure at a specific position around an object, by manipulating the shape of this object. Our algorithm belongs to the class of quantum-assisted algorithms, as the optimization task runs iteratively on a D-Wave 2000Q quantum processing unit (QPU), whereby the evaluation and interpretation of the results happens classically. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of a QPU, and not to prove supremacy over existing classical finite-element algorithms for design optimization.Comment: 17 pages, 5 figure

    A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms

    Full text link
    Recent years have seen significant advances in quantum/quantum-inspired technologies capable of approximately searching for the ground state of Ising spin Hamiltonians. The promise of leveraging such technologies to accelerate the solution of difficult optimization problems has spurred an increased interest in exploring methods to integrate Ising problems as part of their solution process, with existing approaches ranging from direct transcription to hybrid quantum-classical approaches rooted in existing optimization algorithms. While it is widely acknowledged that quantum computers should augment classical computers, rather than replace them entirely, comparatively little attention has been directed toward deriving analytical characterizations of their interactions. In this paper, we present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs (MBQP) via Ising solvers. We show the exactness of a convex copositive reformulation of MBQPs, allowing the resulting reformulation to inherit the straightforward analysis of convex optimization. We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm. Using existing complexity results for convex cutting-plane algorithms, we deduce that the classical portion of this hybrid framework is guaranteed to be polynomial time. This suggests that when applied to NP-hard problems, the complexity of the solution is shifted onto the subroutine handled by the Ising solver
    • 

    corecore