437 research outputs found

    Machine-learning-based condition assessment of gas turbine: a review

    Get PDF
    Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.This research was funded by Siemens Energy.Peer ReviewedPostprint (published version

    A dynamic weighted RBF-based ensemble for prediction of time series data from nuclear components

    Get PDF
    International audienceIn this paper, an ensemble approach is proposed for prediction of time series data based on a Support Vector Regression (SVR) algorithm with RBF loss function. We propose a strategy to build diverse sub-models of the ensemble based on the Feature Vector Selection (FVS) method of Baudat & Anouar (2003), which decreases the computational burden and keeps the generalization performance of the model. A simple but effective strategy is used to calculate the weights of each data point for different sub-models built with RBF-SVR. A real case study on a power production component is presented. Comparisons with results given by the best single SVR model and a fixed-weights ensemble prove the robustness and accuracy of the proposed ensemble approach

    Evolving Clustering Algorithms And Their Application For Condition Monitoring, Diagnostics, & Prognostics

    Get PDF
    Applications of Condition-Based Maintenance (CBM) technology requires effective yet generic data driven methods capable of carrying out diagnostics and prognostics tasks without detailed domain knowledge and human intervention. Improved system availability, operational safety, and enhanced logistics and supply chain performance could be achieved, with the widespread deployment of CBM, at a lower cost level. This dissertation focuses on the development of a Mutual Information based Recursive Gustafson-Kessel-Like (MIRGKL) clustering algorithm which operates recursively to identify underlying model structure and parameters from stream type data. Inspired by the Evolving Gustafson-Kessel-like Clustering (eGKL) algorithm, we applied the notion of mutual information to the well-known Mahalanobis distance as the governing similarity measure throughout. This is also a special case of the Kullback-Leibler (KL) Divergence where between-cluster shape information (governed by the determinant and trace of the covariance matrix) is omitted and is only applicable in the case of normally distributed data. In the cluster assignment and consolidation process, we proposed the use of the Chi-square statistic with the provision of having different probability thresholds. Due to the symmetry and boundedness property brought in by the mutual information formulation, we have shown with real-world data that the algorithm’s performance becomes less sensitive to the same range of probability thresholds which makes system tuning a simpler task in practice. As a result, improvement demonstrated by the proposed algorithm has implications in improving generic data driven methods for diagnostics, prognostics, generic function approximations and knowledge extractions for stream type of data. The work in this dissertation demonstrates MIRGKL’s effectiveness in clustering and knowledge representation and shows promising results in diagnostics and prognostics applications

    An Integrated Fuzzy Inference Based Monitoring, Diagnostic, and Prognostic System

    Get PDF
    To date the majority of the research related to the development and application of monitoring, diagnostic, and prognostic systems has been exclusive in the sense that only one of the three areas is the focus of the work. While previous research progresses each of the respective fields, the end result is a variable grab bag of techniques that address each problem independently. Also, the new field of prognostics is lacking in the sense that few methods have been proposed that produce estimates of the remaining useful life (RUL) of a device or can be realistically applied to real-world systems. This work addresses both problems by developing the nonparametric fuzzy inference system (NFIS) which is adapted for monitoring, diagnosis, and prognosis and then proposing the path classification and estimation (PACE) model that can be used to predict the RUL of a device that does or does not have a well defined failure threshold. To test and evaluate the proposed methods, they were applied to detect, diagnose, and prognose faults and failures in the hydraulic steering system of a deep oil exploration drill. The monitoring system implementing an NFIS predictor and sequential probability ratio test (SPRT) detector produced comparable detection rates to a monitoring system implementing an autoassociative kernel regression (AAKR) predictor and SPRT detector, specifically 80% vs. 85% for the NFIS and AAKR monitor respectively. It was also found that the NFIS monitor produced fewer false alarms. Next, the monitoring system outputs were used to generate symptom patterns for k-nearest neighbor (kNN) and NFIS classifiers that were trained to diagnose different fault classes. The NFIS diagnoser was shown to significantly outperform the kNN diagnoser, with overall accuracies of 96% vs. 89% respectively. Finally, the PACE implementing the NFIS was used to predict the RUL for different failure modes. The errors of the RUL estimates produced by the PACE-NFIS prognosers ranged from 1.2-11.4 hours with 95% confidence intervals (CI) from 0.67-32.02 hours, which are significantly better than the population based prognoser estimates with errors of ~45 hours and 95% CIs of ~162 hours

    Towards a Taxonomic Benchmarking Framework for Predictive Maintenance: The Case of NASA’s Turbofan Degradation

    Get PDF
    The availability of datasets for analytical solution development is a common bottleneck in data-driven predictive maintenance. Therefore, novel solutions are mostly based on synthetic benchmarking examples, such as NASA’s C-MAPSS datasets, where researchers from various disciplines like artificial intelligence and statistics apply and test their methodical approaches. The majority of studies, however, only evaluate the overall solution against a final prediction score, where we argue that a more fine-grained consideration is required distinguishing between detailed method components to measure their particular impact along the prognostic development process. To address this issue, we first conduct a literature review resulting in more than one hundred studies using the C-MAPSS datasets. Subsequently, we apply a taxonomy approach to receive dimensions and characteristics that decompose complex analytical solutions into more manageable components. The result is a first draft of a systematic benchmarking framework as a more comparable basis for future development and evaluation purposes

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio
    • …
    corecore