49,878 research outputs found

    Multi-view stacking for activity recognition with sound and accelerometer data

    Get PDF
    Many Ambient Intelligence (AmI) systems rely on automatic human activity recognition for getting crucial context information, so that they can provide personalized services based on the current users’ state. Activity recognition provides core functionality to many types of systems including: Ambient Assisted Living, fitness trackers, behavior monitoring, security, and so on. The advent of wearable devices along with their diverse set of embedded sensors opens new opportunities for ubiquitous context sensing. Recently, wearable devices such as smartphones and smart-watches have been used for activity recognition and monitoring. Most of the previous works use inertial sensors (accelerometers, gyroscopes) for activity recognition and combine them using an aggregation approach, i.e., extract features from each sensor and aggregate them to build the final classification model. This is not optimal since each sensor data source has its own statistical properties. In this work, we propose the use of a multi-view stacking method to fuse the data from heterogeneous types of sensors for activity recognition. Specifically, we used sound and accelerometer data collected with a smartphone and a wrist-band while performing home task activities. The proposed method is based on multi-view learning and stacked generalization, and consists of training a model for each of the sensor views and combining them with stacking. Our experimental results showed that the multi-view stacking method outperformed the aggregation approach in terms of accuracy, recall and specificity

    Hierarchical Attention Network for Visually-aware Food Recommendation

    Full text link
    Food recommender systems play an important role in assisting users to identify the desired food to eat. Deciding what food to eat is a complex and multi-faceted process, which is influenced by many factors such as the ingredients, appearance of the recipe, the user's personal preference on food, and various contexts like what had been eaten in the past meals. In this work, we formulate the food recommendation problem as predicting user preference on recipes based on three key factors that determine a user's choice on food, namely, 1) the user's (and other users') history; 2) the ingredients of a recipe; and 3) the descriptive image of a recipe. To address this challenging problem, we develop a dedicated neural network based solution Hierarchical Attention based Food Recommendation (HAFR) which is capable of: 1) capturing the collaborative filtering effect like what similar users tend to eat; 2) inferring a user's preference at the ingredient level; and 3) learning user preference from the recipe's visual images. To evaluate our proposed method, we construct a large-scale dataset consisting of millions of ratings from AllRecipes.com. Extensive experiments show that our method outperforms several competing recommender solutions like Factorization Machine and Visual Bayesian Personalized Ranking with an average improvement of 12%, offering promising results in predicting user preference for food. Codes and dataset will be released upon acceptance
    corecore