373 research outputs found

    A software framework for alleviating the effects of MAC-aware jamming attacks in wireless access networks

    Get PDF
    The IEEE 802.11 protocol inherently provides the same long-term throughput to all the clients associated with a given access point (AP). In this paper, we first identify a clever, low-power jamming attack that can take advantage of this behavioral trait: the placement of a lowpower jammer in a way that it affects a single legitimate client can cause starvation to all the other clients. In other words, the total throughput provided by the corresponding AP is drastically degraded. To fight against this attack, we design FIJI, a cross-layer anti-jamming system that detects such intelligent jammers and mitigates their impact on network performance. FIJI looks for anomalies in the AP load distribution to efficiently perform jammer detection. It then makes decisions with regards to optimally shaping the traffic such that: (a) the clients that are not explicitly jammed are shielded from experiencing starvation and, (b) the jammed clients receive the maximum possible throughput under the given conditions. We implement FIJI in real hardware; we evaluate its efficacy through experiments on two wireless testbeds, under different traffic scenarios, network densities and jammer locations. We perform experiments both indoors and outdoors, and we consider both WLAN and mesh deployments. Our measurements suggest that FIJI detects such jammers in realtime and alleviates their impact by allocating the available bandwidth in a fair and efficient way. © Springer Science+Business Media

    Supporting Internet Access and Quality of Service in Distributed Wireless Ad Hoc Networks

    Get PDF
    In this era of wireless hysteria, with continuous technological advances in wireless communication and new wireless technologies becoming standardized at a fast rate, we can expect an increased interest for wireless networks, such as ad hoc and mesh networks. These networks operate in a distributed manner, independent of any centralized device. In order to realize the practical benefits of ad hoc networks, two challenges (among others) need to be considered: distributed QoS guarantees and multi-hop Internet access. In this thesis we present conceivable solutions to both of these problems. An autonomous, stand-alone ad hoc network is useful in many cases, such as search and rescue operations and meetings where participants wish to quickly share information. However, an ad hoc network connected to the Internet is even more desirable. This is because Internet plays an important role in the daily life of many people by offering a broad range of services. In this thesis we present AODV+, which is our solution to achieve this network interconnection between a wireless ad hoc network and the wired Internet. Providing QoS in distributed wireless networks is another challenging, but yet important, task mainly because there is no central device controlling the medium access. In this thesis we propose EDCA with Resource Reservation (EDCA/RR), which is a fully distributed MAC scheme that provides QoS guarantees by allowing applications with strict QoS requirements to reserve transmission time for contention-free medium access. Our scheme is compatible with existing standards and provides both parameterized and prioritized QoS. In addition, we present the Distributed Deterministic Channel Access (DDCA) scheme, which is a multi-hop extension of EDCA/RR and can be used in wireless mesh networks. Finally, we have complemented our simulation studies with real-world ad hoc and mesh network experiments. With the experience from these experiments, we obtained a clear insight into the limitations of wireless channels. We could conclude that a wise design of the network architecture that limits the number of consecutive wireless hops may result in a wireless mesh network that is able to satisfy users’ needs. Moreover, by using QoS mechanisms like EDCA/RR or DDCA we are able to provide different priorities to traffic flows and reserve resources for the most time-critical applications

    Coding in 802.11 WLANs

    Get PDF
    Forward error correction (FEC) coding is widely used in communication systems to correct transmis- sion errors. In IEEE 802.11a/g transmitters, convolutional codes are used for FEC at the physical (PHY) layer. As is typical in wireless systems, only a limited choice of pre-speci¯ed coding rates is supported. These are implemented in hardware and thus di±cult to change, and the coding rates are selected with point to point operation in mind. This thesis is concerned with using FEC coding in 802.11 WLANs in more interesting ways that are better aligned with application requirements. For example, coding to support multicast tra±c rather than simple point to point tra±c; coding that is cognisant of the multiuser nature of the wireless channel; and coding which takes account of delay requirements as well as losses. We consider layering additional coding on top of the existing 802.11 PHY layer coding, and investigate the tradeo® between higher layer coding and PHY layer modulation and FEC coding as well as MAC layer scheduling. Firstly we consider the joint multicast performance of higher-layer fountain coding concatenated with 802.11a/g OFDM PHY modulation/coding. A study on the optimal choice of PHY rates with and without fountain coding is carried out for standard 802.11 WLANs. We ¯nd that, in contrast to studies in cellular networks, in 802.11a/g WLANs the PHY rate that optimizes uncoded multicast performance is also close to optimal for fountain-coded multicast tra±c. This indicates that in 802.11a/g WLANs cross-layer rate control for higher-layer fountain coding concatenated with physical layer modulation and FEC would bring few bene¯ts. Secondly, using experimental measurements taken in an outdoor environment, we model the chan- nel provided by outdoor 802.11 links as a hybrid binary symmetric/packet erasure channel. This hybrid channel o®ers capacity increases of more than 100% compared to a conventional packet erasure channel (PEC) over a wide range of RSSIs. Based upon the established channel model, we further consider the potential performance gains of adopting a binary symmetric channel (BSC) paradigm for multi-destination aggregations in 802.11 WLANs. We consider two BSC-based higher-layer coding approaches, i.e. superposition coding and a simpler time-sharing coding, for multi-destination aggre- gated packets. The performance results for both unicast and multicast tra±c, taking account of MAC layer overheads, demonstrate that increases in network throughput of more than 100% are possible over a wide range of channel conditions, and that the simpler time-sharing approach yields most of these gains and have minor loss of performance. Finally, we consider the proportional fair allocation of high-layer coding rates and airtimes in 802.11 WLANs, taking link losses and delay constraints into account. We ¯nd that a layered approach of separating MAC scheduling and higher-layer coding rate selection is optimal. The proportional fair coding rate and airtime allocation (i) assigns equal total airtime (i.e. airtime including both successful and failed transmissions) to every station in a WLAN, (ii) the station airtimes sum to unity (ensuring operation at the rate region boundary), and (iii) the optimal coding rate is selected to maximise goodput (treating packets decoded after the delay deadline as losses)

    Improving the Performance of Wireless LANs

    Get PDF
    This book quantifies the key factors of WLAN performance and describes methods for improvement. It provides theoretical background and empirical results for the optimum planning and deployment of indoor WLAN systems, explaining the fundamentals while supplying guidelines for design, modeling, and performance evaluation. It discusses environmental effects on WLAN systems, protocol redesign for routing and MAC, and traffic distribution; examines emerging and future network technologies; and includes radio propagation and site measurements, simulations for various network design scenarios, numerous illustrations, practical examples, and learning aids

    Evaluation of a cooperative ARQ protocol for delay-tolerant vehicular networks

    Get PDF
    This paper evaluates a Cooperative ARQ protocol to be used in delay-tolerant vehicular networks. The scenario consists in cars downloading information from Access Points along a road. The key difference between proposed Cooperative ARQ protocols is when the cooperation takes place. Simply C-ARQ cooperation occurs in a packet-by-packet basis. In this proposal, that we call DC-ARQ (Delayed Cooperative ARQ), the cooperation is delayed until cars are out of the coverage area of the Access Point. The scheme has been evaluated through simulations. A comparison of DC-ARQ with a baseline case in which no cooperation is used has been performed under different vehicle densities scenarios.Peer ReviewedPostprint (author’s final draft

    A Cross-Layer Modification to the DSR Routing Protocol in Wireless Mesh Networks

    Get PDF
    A cross-layer modification to the DSR routing protocol that finds high throughput paths in WMNs has been introduced in this work. The Access Efficiency Factor (AEF) has been introduced in this modification as a local congestion avoidance metric for the DSR routing mechanism as an alternative to the hop count (Hc) metric. In this modification, the selected path is identified by finding a path with the highest minimum AEF (max_min_AEF) value. The basis of this study is to compare the performance of the Hc and max_min_AEF as routing metrics for the DSR protocol in WMNs using the OPNET modeler. Performance comparisons between max_min_AEF, Metric Path (MP), and the well known ETT metrics are also carried out in this work. The results of this modification suggest that employing the max_min_AEF as a routing metric outperforms the Hc, ETT, and MP within the DSR protocol in WMNs in terms of throughput. This is because the max_min_AEF is based upon avoiding directing traffic through congested nodes where significant packet loss is likely to occur. This throughput improvement is associated with an increment in the delay time due to the long paths taken to avoid congested regions. To overcome this drawback, a further modification to the routing discovery mechanism has been made by imposing a hop count limit (HCL) on the discovered paths. Tuning the HCL allows the network manager to tradeoff throughput against delay. The choice of congestion avoidance metric exhibits another shortcoming owing to its dependency on the packet size. It penalises the smaller packets over large ones in terms of path lengths. This has been corrected for by introducing a ModAEF metric that explicitly considers the size of the packet. The ModAEF metric includes a tuning factor that allows the operator determine the level of the weighting that should be applied to the packet size to correct for this dependence

    On the Impact of Caching and a Model for Storage-Capacity Measurements for Energy Conservation in Asymmetrical Wireless Devices

    Full text link
    Traffic and channel-data rate combined with the stream oriented methodology can provide a scheme for offering optimized and guaranteed QoS. In this work a stream oriented modeled scheme is proposed based on each node's self-scheduling energy management. This scheme is taking into account the overall packet loss in order to form the optimal effective -for the end-to-end connection- throughput response. The scheme also -quantitatively- takes into account the asymmetrical nature of wireless links and the caching activity that is used for data revocation in the ad-hoc based connectivity scenario. Through the designed middleware and the architectural layering and through experimental simulation, the proposed energy-aware management scheme is thoroughly evaluated in order to meet the parameters' values where the optimal throughput response for each device/user is achieved.Comment: IEEE Communication Society (COMSOC), 16th International Conference on Software, Telecommunications and Computer Networks (SoftCOM 2008), September 25 & 26 2008, "Dubrovnik", September 27, Split and Dubrovnik, pp. 243-24
    corecore