51,681 research outputs found

    Efficient Bayesian-based Multi-View Deconvolution

    Full text link
    Light sheet fluorescence microscopy is able to image large specimen with high resolution by imaging the sam- ples from multiple angles. Multi-view deconvolution can significantly improve the resolution and contrast of the images, but its application has been limited due to the large size of the datasets. Here we present a Bayesian- based derivation of multi-view deconvolution that drastically improves the convergence time and provide a fast implementation utilizing graphics hardware.Comment: 48 pages, 20 figures, 1 table, under review at Nature Method

    Communication Theoretic Data Analytics

    Full text link
    Widespread use of the Internet and social networks invokes the generation of big data, which is proving to be useful in a number of applications. To deal with explosively growing amounts of data, data analytics has emerged as a critical technology related to computing, signal processing, and information networking. In this paper, a formalism is considered in which data is modeled as a generalized social network and communication theory and information theory are thereby extended to data analytics. First, the creation of an equalizer to optimize information transfer between two data variables is considered, and financial data is used to demonstrate the advantages. Then, an information coupling approach based on information geometry is applied for dimensionality reduction, with a pattern recognition example to illustrate the effectiveness. These initial trials suggest the potential of communication theoretic data analytics for a wide range of applications.Comment: Published in IEEE Journal on Selected Areas in Communications, Jan. 201

    Efficient 2D-3D Matching for Multi-Camera Visual Localization

    Full text link
    Visual localization, i.e., determining the position and orientation of a vehicle with respect to a map, is a key problem in autonomous driving. We present a multicamera visual inertial localization algorithm for large scale environments. To efficiently and effectively match features against a pre-built global 3D map, we propose a prioritized feature matching scheme for multi-camera systems. In contrast to existing works, designed for monocular cameras, we (1) tailor the prioritization function to the multi-camera setup and (2) run feature matching and pose estimation in parallel. This significantly accelerates the matching and pose estimation stages and allows us to dynamically adapt the matching efforts based on the surrounding environment. In addition, we show how pose priors can be integrated into the localization system to increase efficiency and robustness. Finally, we extend our algorithm by fusing the absolute pose estimates with motion estimates from a multi-camera visual inertial odometry pipeline (VIO). This results in a system that provides reliable and drift-less pose estimation. Extensive experiments show that our localization runs fast and robust under varying conditions, and that our extended algorithm enables reliable real-time pose estimation.Comment: 7 pages, 5 figure

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure
    corecore