109,130 research outputs found

    Robustness of optimal channel reservation using handover prediction in multiservice wireless networks

    Full text link
    The aim of our study is to obtain theoretical limits for the gain that can be expected when using handover prediction and to determine the sensitivity of the system performance against different parameters. We apply an average-reward reinforcement learning approach based on afterstates to the design of optimal admission control policies in mobile multimedia cellular networks where predictive information related to the occurrence of future handovers is available. We consider a type of predictor that labels active mobile terminals in the cell neighborhood a fixed amount of time before handovers are predicted to occur, which we call the anticipation time. The admission controller exploits this information to reserve resources efficiently. We show that there exists an optimum value for the anticipation time at which the highest performance gain is obtained. Although the optimum anticipation time depends on system parameters, we find that its value changes very little when the system parameters vary within a reasonable range. We also find that, in terms of system performance, deploying prediction is always advantageous when compared to a system without prediction, even when the system parameters are estimated with poor precision. © Springer Science+Business Media, LLC 2012.The authors would like to thank the reviewers for their valuable comments that helped to improve the quality of the paper. This work has been supported by the Spanish Ministry of Education and Science and European Comission (30% PGE, 70% FEDER) under projects TIN2008-06739-C04-02 and TIN2010-21378-C02-02 and by Comunidad de Madrid through project S-2009/TIC-1468.Martínez Bauset, J.; Giménez Guzmán, JM.; Pla, V. (2012). Robustness of optimal channel reservation using handover prediction in multiservice wireless networks. Wireless Networks. 18(6):621-633. https://doi.org/10.1007/s11276-012-0423-6S621633186Ji, S., Chen, W., Ding, X., Chen, Y., Zhao, C., & Hu, C. (2010). Potential benefits of GPS/GLONASS/GALILEO integration in an urban canyon–Hong Kong. Journal of Navigation, 63(4), 681–693.Soh, W., & Kim, H. (2006). A predictive bandwidth reservation scheme using mobile positioning and road topology information. IEEE/ACM Transactions on Networking, 14(5), 1078–1091.Kwon, H., Yang, M., Park, A., & Venkatesan, S. (2008). Handover prediction strategy for 3G-WLAN overlay networks. In Proceedings: IEEE network operations and management symposium (NOMS) (pp. 819–822).Huang, C., Shen, H., & Chuang, Y. (2010). An adaptive bandwidth reservation scheme for 4G cellular networks using flexible 2-tier cell structure. Expert Systems with Applications, 37(9), 6414–6420.Wanalertlak, W., Lee, B., Yu, C., Kim, M., Park, S., & Kim, W. (2011). Behavior-based mobility prediction for seamless handoffs in mobile wireless networks. Wireless Networks, 17(3), 645–658.Becvar, Z., Mach, P., & Simak, B. (2011). Improvement of handover prediction in mobile WiMAX by using two thresholds. Computer Networks, 55, 3759–3773.Sgora, A., & Vergados, D. (2009). Handoff prioritization and decision schemes in wireless cellular networks: a survey. IEEE Communications Surveys and Tutorials, 11(4), 57–77.Choi, S., & Shin, K. G. (2002). Adaptive bandwidth reservation and admission control in QoS-sensitive cellular networks. IEEE Transactions on Parallel and Distributed Systems, 13(9), 882–897.Ye, Z., Law, L., Krishnamurthy, S., Xu, Z., Dhirakaosal, S., Tripathi, S., & Molle, M. (2007). Predictive channel reservation for handoff prioritization in wireless cellular networks. Computer Networks, 51(3), 798–822.Abdulova, V., & Aybay, I. (2011). Predictive mobile-oriented channel reservation schemes in wireless cellular networks. Wireless Networks, 17(1), 149–166.Ramjee, R., Nagarajan, R., & Towsley, D. (1997). On optimal call admission control in cellular networks. Wireless Networks, 3(1), 29–41.Bartolini, N. (2001). Handoff and optimal channel assignment in wireless networks. Mobile Networks and Applications, 6(6), 511–524.Bartolini, N., & Chlamtac, I. (2002). Call admission control in wireless multimedia networks. In Proceedings: Personal, indoor and mobile radio communications (PIMRC) (pp. 285–289).Pla, V., & Casares-Giner, V. (2003). Optimal admission control policies in multiservice cellular networks. In Proceedings of the international network optimization conference (INOC) (pp. 466–471).Chu, K., Hung, L., & Lin, F. (2009). Adaptive channel reservation for call admission control to support prioritized soft handoff calls in a cellular CDMA system. Annals of Telecommunications, 64(11), 777–791.El-Alfy, E., & Yao, Y. (2011). Comparing a class of dynamic model-based reinforcement learning schemes for handoff prioritization in mobile communication networks. Expert Systems With Applications, 38(7), 8730–8737.Gimenez-Guzman, J. M., Martinez-Bauset, J., & Pla, V. (2007). A reinforcement learning approach for admission control in mobile multimedia networks with predictive information. IEICE Transactions on Communications , E-90B(7), 1663–1673.Sutton R., Barto A. G. (1998) Reinforcement learning: An introduction. The MIT press, Cambridge, MassachusettsBusoniu, L., Babuska, R., De Schutter, B., & Ernst, D. (2010). Reinforcement learning and dynamic programming using function approximators. Boca Raton, FL: CRC Press.Watkins, C., & Dayan, P. (1992). Q-learning. Machine learning, 8(3–4), 279–292.Brown, T. (2001). Switch packet arbitration via queue-learning. Advances in Neural Information Processing Systems, 14, 1337–1344.Proper, S., & Tadepalli, P. (2006). Scaling model-based average-reward reinforcement learning for product delivery. In Proceedings 17th European conference on machine learning (pp. 735–742).Driessens, K., Ramon, J., & Gärtner, T. (2006). Graph kernels and Gaussian processes for relational reinforcement learning. Machine Learning, 64(1), 91–119.Banerjee, B., & Stone, P. (2007). General game learning using knowledge transfer. In Proceedings 20th international joint conference on artificial intelligence (pp. 672–677).Martinez-Bauset, J., Pla, V., Garcia-Roger, D., Domenech-Benlloch, M. J., & Gimenez-Guzman, J. M. (2008). Designing admission control policies to minimize blocking/forced-termination. In G. Ming, Y. Pan & P. Fan (Eds.), Advances in wireless networks: Performance modelling, analysis and enhancement (pp. 359–390). New York: Nova Science Pub Inc.Biswas, S., & Sengupta, B. (1997). Call admissibility for multirate traffic in wireless ATM networks. In Proceedings IEEE INFOCOM (2, pp. 649–657).Evans, J. S., & Everitt, D. (1999). Effective bandwidth-based admission control for multiservice CDMA cellular networks. IEEE Transactions on Vehicular Technology, 48(1), 36–46.Gilhousen, K., Jacobs, I., Padovani, R., Viterbi, A., Weaver, L. A. J., & Wheatley, C. E., III. (1991). On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology, 40(2), 303–312.Hegde, N., & Altman, E. (2006). Capacity of multiservice WCDMA networks with variable GoS. Wireless Networks, 12, 241–253.Ben-Shimol, Y., Kitroser, I., & Dinitz, Y. (2006). Two-dimensional mapping for wireless OFDMA systems. IEEE Transactions on Broadcasting, 52(3), 388–396.Gao, D., Cai, J., & Ngan, K. N. (2005). Admission control in IEEE 802.11e wireless LANs. IEEE Network, 19(4), 6–13.Liu, T., Bahl, P., & Chlamtac, I. (1998). Mobility modeling, location tracking, and trajectory prediction in wireless ATM networks. IEEE Journal on Selected Areas in Communications, 16(6), 922–936.Hu, F., & Sharma, N. (2004). Priority-determined multiclass handoff scheme with guaranteed mobile qos in wireless multimedia networks. IEEE Transactions on Vehicular Technology, 53(1), 118–135.Chan, J., & Seneviratne, A. (1999). A practical user mobility prediction algorithm for supporting adaptive QoS in wireless networks. In Proceedings IEEE international conference on networks (ICON) (pp. 104–111).Jayasuriya, A., & Asenstorfer, J. (2002). Mobility prediction model for cellular networks based on the observed traffic patterns. In Proceedings of IASTED international conference on wireless and optical communication (WOC) (pp. 386–391).Diederich, J., & Zitterbart, M. (2005). A simple and scalable handoff prioritization scheme. Computer Communications, 28(7), 773–789.Rashad, S., Kantardzic, M., & Kumar, A. (2006). User mobility oriented predictive call admission control and resource reservation for next-generation mobile networks. Journal of Parallel and Distributed Computing, 66(7), 971–988.Soh, W. -S., & Kim, H. (2003). QoS provisioning in cellular networks based on mobility prediction techniques. IEEE Communications Magazine, 41(1), 86 – 92.Lott, M., Siebert, M., Bonjour, S., vonHugo, D., & Weckerle, M. (2004). Interworking of WLAN and 3G systems. Proceedings IEE Communications, 151(5), 507 – 513.Sanabani, M., Shamala, S., Othman, M., & Zukarnain, Z. (2007). An enhanced bandwidth reservation scheme based on road topology information for QoS sensitive multimedia wireless cellular networks. In Proceedings of the 2007 international conference on computational science and its applications—Part II (ICCSA) (pp. 261–274).Mahadevan, S. (1996). Average reward reinforcement learning: Foundations, algorithms, and empirical results. Machine Learning, 22(1–3), 159–196.Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. New York: Wiley.Das, T. K., Gosavi, A., Mahadevan, S., & Marchalleck, N. (1999). Solving semi-markov decision problems using average reward reinforcement learning. Management Science, 45(4), 560–574.Darken, C., Chang, J., & Moody, J. (1992). Learning rate schedules for faster stochastic gradient search. In Proceedings of the IEEE-SP workshop on neural networks for signal processing II. (pp. 3–12)

    Performance model for two-tier mobile wireless networks with macrocells and small cells

    Full text link
    [EN] A new analytical model is proposed to evaluate the performance of two-tier cellular networks composed of macrocells (MCs) and small cells (SCs), where terminals roam across the service area. Calls being serviced by MCs may retain their channel when entering a SC service area, if no free SC channels are available. Also, newly offered SC calls can overflow to the MC. However, in both situations channels may be repacked to vacate MC channels. The cardinality of the state space of the continuous-time Markov chain (CTMC) that models the system dynamics makes the exact system analysis unfeasible. We propose an approximation based on constructing an equivalent CTMC for which a product-form solution exist that can be obtained with very low computational complexity. We determine performance parameters such as the call blocking probabilities for the MC and SCs, the probability of forced termination, and the carried traffic. We validate the analytical model by simulation. Numerical results show that the proposed analytical model achieves very good precision in scenarios with diverse mobility rates and MCs and SCs loads, as well as when MCs overlay a large number of SCs.Authors would like to thank you the anonymous reviewers for the review comments provided to our work that have decisively contributed to improve the paper. Most of the contribution of V. Casares-Giner was done while visiting the Huazhong University of Science and Technolgy (HUST), Whuhan, China. This visit was supported by the European Commission, 7FP, S2EuNet project. The authors from the Universitat Politecnica de Valencia are partially supported by the Ministry of Economy and Competitiveness of Spain under grant TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The research of Xiaohu Ge was supported by the National Natural Science Foundation of China (NSFC) grant 61210002, the Fundamental Research Funds for the Central Universities grant 2015XJGH011, and China International Joint Research Center of Green Communications and Networking grant 2015B01008.Casares-Giner, V.; Martínez Bauset, J.; Ge, X. (2018). Performance model for two-tier mobile wireless networks with macrocells and small cells. Wireless Networks. 24(4):1327-1342. https://doi.org/10.1007/s11276-016-1407-8S13271342244ABIresearch. (2016). In-building mobile data traffic forecast. ABIreseach, Technical Report.NGMN Alliance. (2015). Recommendations for small cell development and deployment. NGMN Alliance, Technical Report.Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.Yamamoto, T., & Konishi, S. (2013). Impact of small cell deployments on mobility performance in LTE-Advanced systems. In IEEE PIMRC workshops (pp. 189–193).Balakrishnan, R., & Akyildiz, I. (2016). Local anchor schemes for seamless and low-cost handover in coordinated small cells. IEEE Transactions on Mobile Computing, 15(5), 1182–1196.Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. IEEE Communications Surveys & Tutorials, 15(1), 293–311.Yassin, M., AboulHassan, M. A., Lahoud, S., Ibrahim, M., Mezher, D., Cousin, B., & Sourour, E. A. (2015). Survey of ICIC techniques in LTE networks under various mobile environment parameters. Wireless Networks, 1–16.Andrews, M., & Zhang, L. (2015). Utility optimization in heterogeneous networks via CSMA-based algorithms. Wireless Networks, 1–14.El-atty, S. M. A., & Gharsseldien, Z. M. (2016). Performance analysis of an advanced heterogeneous mobile network architecture with multiple small cell layers. Wireless Networks, 1–22.Huang, Q., Huang, Y.-C., Ko, K.-T., & Iversen, V. B. (2011). Loss performance modeling for hierarchical heterogeneous wireless networks with speed-sensitive call admission control. IEEE Transactions on Vehicular Technology, 60(5), 2209–2223.Bonald, T., & Roberts, J. W. (2003). Congestion at flow level and the impact of user behaviour. Computer Networks, 42, 521–536.Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys & Tutorials, 16(4), 2142–2180.Rappaport, S. S., & Hu, L.-R. (1994). Microcellular communication systems with hierarchical macrocell overlays: Traffic performance models and analysis. Proceedings of the IEEE, 82(9), 1383–1397.Ge, X., Han, T., Zhang, Y., Mao, G., Wang, C.-X., Zhang, J., et al. (2014). Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology, 63(3), 1306–1319.Song, W., Jiang, H., & Zhuang, W. (2007). Performance analysis of the WLAN-first scheme in cellular/WLAN interworking. IEEE Transactions on Wireless Communications, 6(5), 1932–1952.Ge, X., Martinez-Bauset, J., Gasares-Giner, V., Yang, B., Ye, J., & Chen, M. (2013). Modeling and performance analysis of different access schemes in two-tier wireless networks. In IEEE Globecom (pp. 4402–4407).Tsai, H.-M., Pang, A.-C., Lin, Y.-C., & Lin, Y.-B. (2005). Repacking on demand for hierarchical cellular networks. Wireless Networks, 11(6), 719–728.Maheshwari, K., & Kumar, A. (2000). Performance analysis of microcellization for supporting two mobility classes in cellular wireless networks. IEEE Transactions on Vehicular Technology, 49(2), 321–333.Whiting, P., & McMillan, D. (1990). Modeling for repacking in cellular radio. In 7th UK Teletraffic Symposium, IEE, Durham.Kelly, F. (1989). Fixed point models of loss networks. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 31(02), 204–218.McMillan, D. (1991). Traffic modelling and analysis for cellular mobile networks. In A. Jensen & V. Iversen (Eds.), Proceedigs of ITC-13 (pp. 627–632). IAC. Copenhaguen: Elsevier Science.Fu, H.-L., Lin, P., & Lin, Y.-B. (2012). Reducing signaling overhead for femtocell/macrocell networks. IEEE Transactions on Mobile Computing, 12(8), 1587–1597.Eklundh, B. (1986). Channel utilization and blocking probability in a cellular mobile telephone system with directed retry. IEEE Transactions on Communications, 37, 329–337.Karlsson, J., & Eklundh, B. (1989). A cellular telephone system with load sharing—An enhancement of directed retry. IEEE Transactions on Communications, 37(5), 530–535.Nelson, R. (1995). Probability, stochastic processes and queueing theory. New York: Springer.Iversen, V.B. (Aug. 1987). The exact evaluation of multi-service loss systems with access control. In Proceedings of the Seventh Nordic Teletraffic Seminar (NTS-7) (Vol. 31, pp. 56–61) Lund, (Sweden).Ross, K. W. (1995). Multiservice loss models for broadband telecommunication networks. New York: Springer.Lin, Y.-B., & Mak, V. W. (1994). Eliminating the boundary effect of a large-scale personal communication service network simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS), 4(2), 165–190.Karray, M.K. (2010). Evaluation of the blocking probability and the throughput in the uplink of wireless cellular networks. In IEEE ComNet (pp. 1–8)

    Mobility Models for Vehicular Communications

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-15497-8_11The experimental evaluation of vehicular ad hoc networks (VANETs) implies elevate economic cost and organizational complexity, especially in presence of solutions that target large-scale deployments. As performance evaluation is however mandatory prior to the actual implementation of VANETs, simulation has established as the de-facto standard for the analysis of dedicated network protocols and architectures. The vehicular environment makes network simulation particularly challenging, as it requires the faithful modelling not only of the network stack, but also of all phenomena linked to road traffic dynamics and radio-frequency signal propagation in highly mobile environments. In this chapter, we will focus on the first aspect, and discuss the representation of mobility in VANET simulations. Specifically, we will present the requirements of a dependable simulation, and introduce models of the road infrastructure, of the driver’s behaviour, and of the traffic dynamics. We will also outline the evolution of simulation tools implementing such models, and provide a hands-on example of reliable vehicular mobility modelling for VANET simulation.Manzoni, P.; Fiore, M.; Uppoor, S.; Martínez Domínguez, FJ.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC. (2015). Mobility Models for Vehicular Communications. En Vehicular ad hoc Networks. Standards, Solutions, and Research. Springer. 309-333. doi:10.1007/978-3-319-15497-8_11S309333Bai F, Sadagopan N, Helmy A (2003) The IMPORTANT framework for analyzing the impact of mobility on performance of routing protocols for adhoc networks. Elsevier Ad Hoc Netw1:383–403Baumann R, Legendre F, Sommer P (2008) Generic mobility simulation framework (GMSF). In: ACM mobility modelsBononi L, Di Felice M, D’Angelo G, Bracuto M, Donatiello L (2008) MoVES: A framework for parallel and distributed simulation of wireless vehicular ad hoc networks. Comput Netw 52(1):155–179Cabspotting Project (2006) San Francisco exploratorium’s invisible dynamics initiative. http://cabspotting.org/index.htmlCamp T, Boleng J, Davies V (2002) A survey of mobility models for ad hoc network research. Wirel Commun Mobile Comput 2(5):483–502. Special issue on Mobile Ad Hoc Networking: Research, Trends and ApplicationsCavin D, Sasson Y, Schiper A (2002) On the accuracy of MANET simulators. In: Proceedings of the second ACM international workshop on principles of mobile computing. ACM, New York, pp 38–43Choffnes D, Bustamante F (2005) An integrated mobility and traffic model for vehicular wireless networks. In: ACM VANETDavies V (2000) Evaluating mobility models within an ad hoc network. Master’s thesis, Colorado School of Mines, Boulder, Etats-UnisEhling M, Bihler W (1996) Zeit im Blickfeld. Ergebnisse einer repräsentativen Zeitbudgeterhebung. In: Blanke K, Ehling M, Schwarz N (eds) Schriftenreihe des Bundesministeriums für Familie, Senioren, Frauen und Jugend, vol 121. W. Kohlhammer, Stuttgart, pp 237–274ETH Laboratory for Software Technology (2009) K. Nagel. http://www.lst.inf.ethz.ch/research/ad-hoc/car-traces/Fiore M, Härri J (2008) The networking shape of vehicular mobility. In: ACM MobiHoc, Hong Kong, ChinaFiore M, Haerri J, Filali F, Bonnet C (2007) Vehicular mobility simulation for VANETS. In: Proceedings of the 40th annual simulation symposium (ANSS 2007), Norfolk, VAFleetnet Project - Internet on the Road (2000) NEC Laboratories Europe. http://www.neclab.eu/Projects/fleetnet.htmGawron C (1998) An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int J Mod Phys C 9(3):393–407Haerri J, Filali F, Bonnet C (2009) Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun Surv Tutorials 11(4):19–41. doi: 10.1109/SURV.2009.090403 . http://dx.doi.org/10.1109/SURV.2009.090403Härri J, Fiore M, Filali F, Bonnet C (2011) Vehicular mobility simulation with VanetMobiSim. Simulation 87(4):275–300. doi: 10.1177/0037549709345997 . http://dx.doi.org/10.1177/0037549709345997Hertkorn G, Wagner P (2004) The application of microscopic activity based travel demand modelling in large scale simulations. In: World conference on transport researchHuang E, Hu W, Crowcroft J, Wassell I (2005) Towards commercial mobile ad hoc network applications: a radio dispatch system. In: Sixth ACM international symposium on mobile ad hoc networking and computing (MobiHoc 2005), Urbana-Champaign, ILJaap S, Bechler M, Wolf L (2005) Evaluation of routing protocols for vehicular ad hoc networks in city traffic scenarios. In: ITSTJardosh A, Belding-Royer E, Almeroth K, Suri S (2003) Towards realistic mobility models for mobile ad hoc networks. In: ACM/IEEE international conference on mobile computing and networking (MobiCom 2003), San Diego, CAKim J, Sridhara V, Bohacek S (2009) Realistic mobility simulation of urban mesh networks. Ad Hoc Netw 7(2):411–430Krajzewicz D (2009) Kombination von taktischen und strategischen Einflüssen in einer mikroskopischen Verkehrsflusssimulation. In: Jürgensohn T, Kolrep H (eds) Fahrermodellierung in Wissenschaft und Wirtschaft. VDI-Verlag, Düsseldorf, pp 104–115Krajzewicz D, Blokpoel RJ, Cartolano F, Cataldi P, Gonzalez A, Lazaro O, Leguay J, Lin L, Maneros J, Rondinone M (2010) iTETRIS - a system for the evaluation of cooperative traffic management solutions. In: Advanced microsystems for automotive applications 2010, VDI-Buch. Springer, Berlin, pp 399–410Krajzewicz D, Erdmann J, Behrisch M, Bieker L (2012) Recent development and applications of SUMO—simulation of urban mobility. Int J Adv Syst Measur 5(3/4):128–138Krauss S (1998) Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. Ph.D. thesis, Universität zu KölnKrauss S, Wagner P, Gawron C (1997) Metastable states in a microscopic model of traffic flow. Phys Rev E 55(304):55–97Legendre F, Borrel V, Dias de Amorim M, Fdida S (2006) Reconsidering microscopic mobility modeling for self-organizing networks. Network IEEE 20(6):4–12. doi: 10.1109/MNET.2006.273114Mangharam R, Weller D, Rajkumar R, Mudalige P (2006) GrooveNet: a hybrid simulator for vehicle-to-vehicle networks. In: IEEE MobiquitousMartinez FJ, Cano JC, Calafate CT, Manzoni P (2008) Citymob: a mobility model pattern generator for VANETs. In: IEEE vehicular networks and applications workshop (Vehi-Mobi, held with ICC), BeijingMiller J, Horowitz E (2007) FreeSim: a free real-time freeway traffic simulator. In: IEEE ITSCNagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys I 2(12):2221–2229Nagel K, Wolf D, Wagner P, Simon P (1998) Two-lane traffic rules for cellular automata: a systematic approach. Phys Rev E 58:1425–1437NOW - Network on Wheels Project (2008) Hartenstein H, Härri J, Torrent-Moreno M. https://dsn.tm.kit.edu/english/projects_now-project.phpPiorkowski M, Raya M, Lugo A, Papadimitratos P, Grossglauser M, Hubaux JP (2008) TraNS: realistic joint traffic and network simulator for VANETs. ACM Mobile Comput Commun Rev 12(1):31–33Rindsfüser G, Ansorge J, Mühlhans H (2002) Aktivitätenvorhaben. In: Beckmann K (ed) SimVV Mobilität verstehen und lenken—zu einer integrierten quantitativen Gesamtsicht und Mikrosimulation von Verkehr, Ministry of School, Science and Research of Nordrhein-WestfalenSaha A, Johnson D (2004) Modeling mobility for vehicular ad hoc networks. In: ACM VANETSeskar I, Maric S, Holtzman J, Wasserman J (1992) Rate of location area updates in cellular systems. In: IEEE 42nd vehicular technology conference, 1992, vol 2, pp 694–697. doi: 10.1109/VETEC.1992.245478Sommer C, German R, Dressler F (2011) Bidirectionally coupled network and road traffic simulation for improved ivc analysis. IEEE Trans Mobile Comput 10(1):3–15Tian J, Haehner J, Becker C, Stepanov I, Rothermel K (2002) Graph-based mobility model for mobile ad hoc network simulation. In: SCS ANSS, San DiegoTreiber M, Helbing D (2002) Realistische mikrosimulation von strassenverkehr mit einem einfachen modell. In: ASIM, Rostock, AllemagneTreiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic simulations. Phys Rev E 62(2):1805–1824UDel Models for Simulation of Urban Mobile Wireless Networks (2009) Stephan Bohacek. http://www.udelmodels.eecis.udel.eduUMass DieselNet Project (2009) UMass diverse outdoor mobile environment (DOME). https://dome.cs.umass.edu/umassdieselnetUppoor S, Trullols-Cruces O, Fiore M, Barcelo-Ordinas JM (2015) Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Trans Mobile Comput 1:1. PrePrints. doi: 10.1109/TMC.2013.27Varschen C, Wagner P (2006) Mikroskopische Modellierung der Personenverkehrsnachfrage auf Basis von Zeitverwendungstagebuchern. Stadt Region Land 81:63–69Yoon J, Liu M, Noble B (2003) Random waypoint considered harmful. In: Proceedings of IEEE INFOCOMM 2003, San Francisco, CAZheng Q, Hong X, Liu J (2006) An agenda-based mobility model. In: 39th IEEE annual simulation symposium (ANSS-39-2006), Huntsville, A

    Exploring the potential of phone call data to characterize the relationship between social network and travel behavior

    Full text link
    [EN] Social network contacts have significant influence on individual travel behavior. However, transport models rarely consider social interaction. One of the reasons is the difficulty to properly model social influence based on the limited data available. Non-conventional, passively collected data sources, such as Twitter, Facebook or mobile phones, provide large amounts of data containing both social interaction and spatiotemporal information. The analysis of such data opens an opportunity to better understand the influence of social networks on travel behavior. The main objective of this paper is to examine the relationship between travel behavior and social networks using mobile phone data. A huge dataset containing billions of registers has been used for this study. The paper analyzes the nature of co-location events and frequent locations shared by social network contacts, aiming not only to provide understanding on why users share certain locations, but also to quantify the degree in which the different types of locations are shared. Locations have been classified as frequent (home, work and other) and non-frequent. A novel approach to identify co-location events based on the intersection of users' mobility models has been proposed. Results show that other locations different from home and work are frequently associated to social interaction. Additionally, the importance of non-frequent locations in co-location events is shown. Finally, the potential application of the data analysis results to improve activity-based transport models and assess transport policies is discussed.The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no 318367 (EUNOIA project) and no 611307 (INSIGHT project). The work of ML has been funded under the PD/004/2013 project, from the Conselleria de Educacion, Cultura y Universidades of the Government of the Balearic Islands and from the European Social Fund through the Balearic Islands ESF operational program for 2013-2017.Picornell Tronch, M.; Ruiz Sánchez, T.; Lenormand, M.; Ramasco, JJ.; Dubernet, T.; Frías-Martínez, E. (2015). Exploring the potential of phone call data to characterize the relationship between social network and travel behavior. Transportation. 42(4):647-668. https://doi.org/10.1007/s11116-015-9594-1S647668424Ahas, R., Aasa, A., Silm, S., Tiru, M.: Daily rhythms of suburban commuters’ movements in the tallinn metropolitan area: case study with mobile positioning data. Transp. Res. Part C 18, 45–54 (2010)Arentze, T.,Timmermans, H. J.: social networks, social interactions and activity-travel behavior: a framework for micro-simulation. Paper presented at the 85th annual meeting of the Transportation Research Board, Washington, D. C., Jan 2006 (2006)Arentze, T., Timmermans, H.: Social networks, social interactions, and activity-travel behavior: a framework for microsimulation. Environ. Plan. 35, 1012–1027 (2008)Axhausen, K.W.: Social networks and travel: some hypotheses. In: Donaghy, K.P., Poppelreuter, S., Rudinger, G. (eds.) Social Aspects of Sustainable Transport: Transatlantic Perspectives, pp. 90–108. Ashgate, Aldershot (2005)Bagrow, J.P., Lin, Y.-R.: Mesoscopic structure and social aspects of human mobility. PLoS One 7(5), 1–11 (2012)Bar-Gera, H.: Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from israel. Transp. Res. Part C 15(2007), 380–391 (2007)Becker, R.A., Cáceres, R., Hanson, K., Loh, J.M., Urbanek, S., Varshavsky, A., Volinsky, C.: A tale of one city: using cellular network data for urban planning. Pervasive Comput. IEEE 10(4), 18–26 (2011)Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462 (2006)Caceres, N., Wideberg, J.P., Benitez, F.G.: Deriving origin–destination data from a mobile phone network. IET Intell. Transp. Syst. 1(1), 5–26 (2007)Caceres, N., Wideberg, J.P., Benitez, F.G.: Review of traffic data estimations extracted from cellular networks. IET Intell. Transp. Syst. 2(3), 179–192 (2008)Caceres, N., Romero, L.M., Benitez, F.G., Castillo, J.M.D.: Traffic flow estimation models using cellular phone data. IEEE Trans. Intell. Transp. Syst. 13(3), 1430–1441 (2012)Calabrese, F., Pereira, F. C., Lorenzo, G. D., Liu, L., Ratti, C.: The geography of taste: analyzing cell-phone mobility and social events. In: Proceedings of IEEE International Conference on Pervasive Computing (2010)Calabrese, F., Smoreda, Z., Blondel, V.D., Ratti, C.: Interplay between telecommunications and face-to-face interactions: a study using mobile phone data. PLoS One 6(7), e20814 (2011a). doi: 10.1371/journal.pone.0020814Calabrese, F., Lorenzo, G.D., Liu, L., Ratti, C.: Estimating origin-destination flows using mobile phone location data. Pervasive Comput. IEEE 10(4), 36–44 (2011b)Carrasco, J.A., Miller, E.J.: Exploring the propensity to perform social activities: social networks approach. Transportation 33, 463–480 (2006)Carrasco, J.A., Hogan, B., Wellman, B., Miller, E.J.: Collecting social network data to study social activity-travel behaviour: an egocentric approach. Environ. Plan. B 35(6), 961–980 (2008a)Carrasco, J.A., Hogan B., Wellman B., Miller E. J.: Agency in social activity and ICT interactions: The role of social networks in time and space, Tijdschrift voor Economische en Sociale Geografie (J. Eco. Soc. Geogr.), 99(5), 562–583 (2008b)Carrasco, J.A., Miller, E.J., Wellman, B.: How far and with whom do people socialize? Empirical evidence about the distance between social network members. Transp. Res. Rec. 2076, 114–122 (2008b)Carrasco, J.A., Miller, E.J.: The social dimension in action: a multilevel, personal networks model of social activity frequency. Transp. Res. Part A 43(1), 90–104 (2009)Chen, C., Mei, Y.: Does distance still matter in facilitating social ties? The roles of mobility patterns and the built environment. Presented at 93rd TRB annual meeting (2014)Cho E., Myers S.A., Leskovek J.: Friendship and mobility: user movement in location-based social networks. In: KDD ‘11 Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1082–1090 (2011)Clifton, K.J.: The social context of travel behavior. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 441–448. Emerald Press, London (2013)Do T., Gatica-Perez D.: Contextual conditional models for smartphone-based human mobility prediction. In: Proceedings ACM International Conference on Ubiquitous Computing, Pittsburgh, Sept (2012)Doyle, J., Hung, P., Kelly, D., Mcloone, S., Farrell, R.: Utilising mobile phone billing records for travel mode discovery. ISSC 2011, Trinity College Dublin, June (2011)Dubernet, T., Axhausen K. W.: Solution concepts for the simulation of household-level joint descision making in multi-agent travel simulation tools, paper presented at the 14th Swiss Transport Research Conference (STRC), Ascona (2014)Dugundji, E., Walker, J.: Discrete choice with social and spatial network interdependencies: an empirical example using mixed GEV models with field and “panel” effects. Transp. Res. Rec. 1921, 70–78 (2005)Eagle, N., Pentland, A., Lazer, D.: Inferring social network structure using mobile phone data. Proc. Natl. Acad. Sci. (PNAS) 106(36), 15274–15278 (2009)González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453(2008), 779–782 (2008)Gould, J.: Cell phone enabled travel surveys: the medium moves the message. In: Zmud, J., et al. (eds.) Transport Survey Methods: Best Practice for Decision Making, pp. 51–70. Emerald Press, Bingley (2013)Habib, K.N., Carrasco, J.A.: Investigating the role of social networks in start time and duration of activities: a trivariate simultaneous econometric model. Transportation Research Record: Journal of the Transportation Research Board 2230, 1–8 (2011)Hackney, Jeremy K., Kay W. Axhausen: An agent model of social network and travel behavior interdependence. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)Hackney, J., Marchal, F.: A model for coupling multi-agent social interactions and traffic simulation, in: TRB 2009 annual meeting (2009)Hackney, J., Marchal, F.: A coupled multi-agent microsimulation of social interactions and transportation behavior. Transp. Res. Part A 45, 296–309 (2011)Horni, A.: Destination choice modeling of discretionary activities in transport microsimulations, Ph.D. Thesis, ETH Zurich, Zurich (2013)Isaacman, S.,Becker, R., Caceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Identifying important places in people’s lives from cellular network data. In: Procedings International Conference on Pervasive Computing, San Francisco, June (2011)Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Commun. Mag. IEEE 48(9), 140–150 (2010)Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.-L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Computational Social Science. Science 323, 721 (2009)Ma, H., Ronald, N., Arentze, T.A., Timmermans, H.J.P.: New credit mechanism for semicooperative agent-mediated joint activity-travel scheduling. Transp. Res. Rec. 2230, 104–110 (2011)Ma, H., Arentze, T. A., Timmermans, H. J. P.: Incorporating selfishness and altruism into dynamic joint activity-travel scheduling. Paper presented at the 13th international conference on Travel Behaviour Research (IATBR), Toronto, July (2012)Marchal, F., Nagel, K.: Allowed cooperative agents in a microsimulation to share information with each other about activity locations and about other agents, in order to optimize trip chains (2006)Molin, E.J.E., Arentze, T.A., Timmermans, H.J.P.: Social activities and travel demands : a model-based analysis of social-network data. Transp. Res. Rec. 2082, 168–175 (2007)Moore, J., Carrasco, J.A., Tudela, A.: Exploring the links between personal networks, time use, and the spatial distribution of social contacts. Transportation 40(4), 773–788 (2013)Onnela, J.-P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., et al.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. U.S.A. 104, 7332–7336 (2007)Páez, A., Scott, D.M.: Social influence on travel behavior: a simulation example of the decision to telecommute. Environ. Plan. A 39(3), 647–665 (2007)Phithakkitnukoon, S., Calabrese, F., Smoreda, Z., Ratti, C.: Out of sight out of mind: how our mobile social network changes during migration. Proceedings of the IEEE International Conference on Social Computing, pp. 515–520. Cambridge University Press, Cambridge (2011)Phithakkitnukoon, S., Smoreda, Z., Olivier, P.: Socio-geography of human mobility: a study using longitudinal mobile phone data. PLoS One 7(6), e39253 (2012). doi: 10.1371/journal.pone.0039253Ronald, N.A., Arentze, T.A., Timmermans, H.J.P.: Modeling social interactions between individuals for joint activity scheduling. Transp. Res. Part B 46, 276–290 (2012a)Ronald, N.A., Dignum, V., Jonker, C., Arentze, T.A., Timmermans, H.J.P.: On the engineering of agent-based simulations of social activities with social networks. Inf. Softw. Technol. 54(6), 625–638 (2012b)Rose, G.: Mobile phones as traffic probes: practices, prospects and issues. Transp. Rev. 26(3), 275–291 (2006)Sharmeen, F., Arentze, T., Timmermans, H.: A multilevel path analysis of social network dynamics and the mutual interdependencies between face-to-face and ICT modes of social interaction in the context of life-cycle events. In: Roorda, M.J., Miller, E.J. (eds.) Travel Behaviour Research: Current Foundations, Future Prospects, pp. 411–432. Lulu Press, Toronto (2013)Sharmeen, F., Arentze, T.A., Timmermans, H.J.P.: Dynamics of face-to-face social interaction frequency: role of accessibility, urbanization, changes in geographical distance and path dependence. J. Transp. Geogr. 34, 211–220 (2014)Silm, S., Ahas, R.: The seasonal variability of population in estonian municipalities. Environ. Plan. A 42, 2527–2546 (2010)Silvis, J., Niemeier, D., D’Souza, R.: Social networks and travel behavior: report from an integrated travel diary. Paper presented at the 11th international conference on Travel Behaviour Research, Kyoto, Aug (2006)Sobolevsky, S., Szell, M., Campari, R., Couronné, T., Smoreda, Z., et al.: Delineating geographical regions with networks of human interactions in an extensive set of countries. PLoS One 8(12), e81707 (2013)Sohn, K., Kim, D.: Dynamic origin–destination flow estimation using cellular communication system. IEEE Trans. Veh. Technol. 57(5), 2703–2713 (2008)Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(2010), 818–823 (2010a)Song, C., Qu, Z., Blumm, N., Barabási, L.-L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010b)Steenbruggen, J., Borzacchiello, M.T., Nijkamp, P., Scholten, H.: Mobile phone data from gsm networks for traffic parameter and urban spatial pattern assessment: A review of applications and opportunities. GeoJournal 78, 223–243 (2011). doi: 10.1007/s10708-011-9413-yVan den Berg, P., Arentze, T., Timmermans, H.J.P.: A path analysis of social networks, telecommunication and social activity–travel patterns. Transp. Res. Part C 26(2013), 256–268 (2013)Wang, H., Calabrese, F., Lorenzo, G. D., Ratti, C.: Transportation mode inference from anonymized and aggregated mobile phone call detail records. In: 13th international IEEE annual conference on intelligent transportation systems, 318–323 (2010)White, J. and Wells, I.: Extracting origin destination information from mobile phone data. Road transport information and Control, 19–21 Mar (2002)Yim, Y.: The state of cellular probes. California PATH Working Paper, UCB-ITS-PRR-2003-25 (2003)Ythier, J., Walker, J.L., Bierlaire, M.: The influence of social contacts and communication use on travel behavior: a smartphone-based study. In: Transportation Research Board annual meeting (2013

    LTE/NR V2X Communication Modes and Future Requirements of Intelligent Transportation Systems Based on MR-DC Architectures

    Full text link
    [EN] This paper deals with the potential of Third Generation Partnership (3GPP) Project mobile cellular standards to enable vehicular communications. Starting from 3GPP Release 15, and Release 16 specifications for Vehicle-to-Everything (V2X) communications, the different communication modes, interfaces and use cases for V2X based on Long Term Evolution (LTE) and New Radio (NR) are analyzed. This research also studies the potential beneficial impact on V2X of a network that is aware of the underlying Multi-RAT Dual Connectivity (MR-DC) architecture. The methodology followed in this work consists of a review of 3GPP standards for vehicular communications based on mobile networks. The performance evaluation of the communication modes was performed through simulations taking into account resource allocation schemes, packet transmission frequencies, packet size, vehicle density and other parameters defined in the standard. In order to perform simulations of the decentralized communication mode (mode 4), a simulator based on OMNeT++ was configured. For the centralized mode (mode 3), an analytical model in MATLAB was used to configure different simulation scenarios. The results obtained indicate that LTE networks can only support basic V2X use cases because they do not demand strict potential requirements. Simulations showed that the centralized mode offers better performance than mode 4; however, it requires cellular network coverage. More advanced use cases are key for a future Intelligent Transport System (ITS), high-performance networks (i.e., Fifth Generation (5G), NR) are expected to coexist gradually with LTE in the V2X landscape. Therefore, in order to meet the strict requirements for latency, transmission speed and reliability, MR-DC architectures combining different radio access technologies, communication modes and connection interfaces should be deployed. In addition, operation in multi-operator and cross-border scenarios must be guaranteed.This research was supported by the European Union's H2020-ICT-18-2018 action "5G for cooperative, connected and automated mobility", for project "5G for Connected and Automated Road Mobility in the European unioN (5G-CARMEN)" under grant agreement no. 825012.González, EE.; Garcia-Roger, D.; Monserrat Del Río, JF. (2022). LTE/NR V2X Communication Modes and Future Requirements of Intelligent Transportation Systems Based on MR-DC Architectures. Sustainability. 14(7):1-19. https://doi.org/10.3390/su1407387911914

    Modelling the time-varying cell capacity in LTE networks

    Full text link
    In wireless orthogonal frequency-division multiple access (OFDMA) based networks like Long Term Evolution (LTE) or Worldwide Interoperability for Microwave Access (WiMAX) a technique called adaptive modulation and coding (AMC) is applied. With AMC, different modulation and coding schemes (MCSs) are used to serve different users in order to maximise the throughput and range. The used MCS depends on the quality of the radio link between the base station and the user. Data is sent towards users with a good radio link with a high MCS in order to utilise the radio resources more efficiently while a low MCS is used for users with a bad radio link. Using AMC however has an impact on the cell capacity as the quality of a radio link varies when users move around; this can even lead to situations where the cell capacity drops to a point where there are too little radio resources to serve all users. AMC and the resulting varying cell capacity notably has an influence on admission control (AC). AC is the algorithm that decides whether new sessions are allowed to a cell or not and bases its decisions on, amongst others, the cell capacity. The analytical model that is developed in this paper models a cell with varying capacity caused by user mobility using a continuous -time Markov chain (CTMC). The cell is divided into multiple zones, each corresponding to the area in which data is sent towards users using a certain MCS and transitions of users between these zones are considered. The accuracy of the analytical model is verified by comparing the results obtained with it to results obtained from simulations that model the user mobility more realistically. This comparison shows that the analytical model models the varying cell capacity very accurately; only under extreme conditions differences between the results are noticed. The developed analytical and simulation models are then used to investigate the effects of a varying cell capacity on AC. Also, an optimisation algorithm that adapts the parameter of the AC algorithm which determines the amount of resources that are reserved in order to mitigate the effects of the varying cell capacity is studied using the models. Updating the parameter of the AC algorithm is done by reacting to certain triggers that indicate good or bad performance and adapt the parameters of the AC algorithm accordingly. Results show that using this optimisation algorithm improves the quality of service (QoS) that is experienced by the users.This work was partially supported by the Spanish Government through project TIN2010-21378-C02-02 and contract BES-2007-15030.Sas, B.; Bernal Mor, E.; Spaey, K.; Pla, V.; Blondia, C.; Martínez Bauset, J. (2014). Modelling the time-varying cell capacity in LTE networks. Telecommunication Systems. 55(2):299-313. https://doi.org/10.1007/s11235-013-9782-2S2993135523GPP (2010). 3GPP TR 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Physical layer procedures, June 2010.3GPP (2010). 3GPP TR 36.942: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Radio Frequency (RF) system scenarios, September 2010.Al-Rawi, M., & Jäntti, R. (2009). Call admission control with active link protection for opportunistic wireless networks. Telecommunications Systems, 41(1), 13–23.Bhatnagar, S., & Reddy, B.B.I. (2005). Optimal threshold policies for admission control in communication networks via discrete parameter stochastic approximation. Telecommunications Systems, 29(1), 9–31.Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.E3. ict-e3.eu.Elayoubi, S.-E., & Chahed, T. (2005). Admission control in the downlink of WCDMA/UMTS. In LNCS: Vol. 3427. Mobile and wireless systems (pp. 136–151).Garcia, D., Martinez, J., & Pla, V. (2005). Admission control policies in multiservice cellular networks: optimum configuration and sensitivity. In G. Kotsis, & O. Spaniol (Eds.), Lecture notes in computer science: Vol. 3427. Wireless systems and mobility in next generation Internet (pp. 121–135).Guo, J., Liu, F., & Zhu, Z. (2007). Estimate the call duration distribution parameters in GSM system based on K-L divergence method. In International conference on wireless communications, networking and mobile computing (pp. 2988–2991), Shanghai, China, September 2007.Hossain, M., Hassan, M., & Sirisena, H. R. (2004). Adaptive resource management in mobile wireless networks using feedback control theory. Telecommunications Systems, 24(3–4), 401–415.Jeong, S.S., Han, J.A., & Jeon, W.S. (2005). Adaptive connection admission control scheme for high data rate mobile networks. In IEEE 62nd Vehicular technology conference, 2005. VTC-2005-Fall (Vol. 4, pp. 2607–2611).Kim, D.K., Griffith, D., & Golmie, N. (2010). A novel ring-based performance analysis for call admission control in wireless networks. IEEE Communications Letters, 14(4), 324–326.Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM. Baltimore: Philadelphia.MONOTAS. http://www.macltd.com/monotas .Neuts, M. (1981). Matrix-geometric solutions in stochastic models: an algorithmic approach. Baltimore: The Johns Hopkins University Press.NGMN. NGMN Radio Access Performance Evaluation Methodology, January 2008.NGMN. www.ngmn.org .Prehofer, C., & Bettstetter, C. (2005). Self-organization in communication networks: principles and design paradigms. IEEE Communications Magazine, 43(7), 78–85.Ramjee, R., Nagarajan, R., & Towsley, D. (1997). On optimal call admission control in cellular networks. Wireless Networks, 3(1), 29–41.Siwko, J., & Rubin, I. (2001). Call admission control for capacity-varying networks. Telecommunications Systems, 16(1–2), 15–40.SOCRATES. www.fp7-socrates.eu .Spaey, K., Sas, B., & Blondia, C. (2010). Self-optimising call admission control for LTE downlink. In COST 2100 TD(10)10056, Joint Workshop COST 2100 SWG 3.1 & FP7-ICT-SOCRATES, Athens, Greece.Spilling, A. G., Nix, A. R., Beach, M. A., & Harrold, T. J. (2000). Self-organisation in future mobile communications. Electronics & Communication Engineering Journal, 3, 133

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    corecore