5,381 research outputs found

    Parameterized complexity of the MINCCA problem on graphs of bounded decomposability

    Full text link
    In an edge-colored graph, the cost incurred at a vertex on a path when two incident edges with different colors are traversed is called reload or changeover cost. The "Minimum Changeover Cost Arborescence" (MINCCA) problem consists in finding an arborescence with a given root vertex such that the total changeover cost of the internal vertices is minimized. It has been recently proved by G\"oz\"upek et al. [TCS 2016] that the problem is FPT when parameterized by the treewidth and the maximum degree of the input graph. In this article we present the following results for the MINCCA problem: - the problem is W[1]-hard parameterized by the treedepth of the input graph, even on graphs of average degree at most 8. In particular, it is W[1]-hard parameterized by the treewidth of the input graph, which answers the main open problem of G\"oz\"upek et al. [TCS 2016]; - it is W[1]-hard on multigraphs parameterized by the tree-cutwidth of the input multigraph; - it is FPT parameterized by the star tree-cutwidth of the input graph, which is a slightly restricted version of tree-cutwidth. This result strictly generalizes the FPT result given in G\"oz\"upek et al. [TCS 2016]; - it remains NP-hard on planar graphs even when restricted to instances with at most 6 colors and 0/1 symmetric costs, or when restricted to instances with at most 8 colors, maximum degree bounded by 4, and 0/1 symmetric costs.Comment: 25 pages, 11 figure

    Pair-Linking for Collective Entity Disambiguation: Two Could Be Better Than All

    Full text link
    Collective entity disambiguation aims to jointly resolve multiple mentions by linking them to their associated entities in a knowledge base. Previous works are primarily based on the underlying assumption that entities within the same document are highly related. However, the extend to which these mentioned entities are actually connected in reality is rarely studied and therefore raises interesting research questions. For the first time, we show that the semantic relationships between the mentioned entities are in fact less dense than expected. This could be attributed to several reasons such as noise, data sparsity and knowledge base incompleteness. As a remedy, we introduce MINTREE, a new tree-based objective for the entity disambiguation problem. The key intuition behind MINTREE is the concept of coherence relaxation which utilizes the weight of a minimum spanning tree to measure the coherence between entities. Based on this new objective, we design a novel entity disambiguation algorithms which we call Pair-Linking. Instead of considering all the given mentions, Pair-Linking iteratively selects a pair with the highest confidence at each step for decision making. Via extensive experiments, we show that our approach is not only more accurate but also surprisingly faster than many state-of-the-art collective linking algorithms

    Invasion percolation on the Poisson-weighted infinite tree

    Full text link
    We study invasion percolation on Aldous' Poisson-weighted infinite tree, and derive two distinct Markovian representations of the resulting process. One of these is the σ→∞\sigma\to\infty limit of a representation discovered by Angel et al. [Ann. Appl. Probab. 36 (2008) 420-466]. We also introduce an exploration process of a randomly weighted Poisson incipient infinite cluster. The dynamics of the new process are much more straightforward to describe than those of invasion percolation, but it turns out that the two processes have extremely similar behavior. Finally, we introduce two new "stationary" representations of the Poisson incipient infinite cluster as random graphs on Z\mathbb {Z} which are, in particular, factors of a homogeneous Poisson point process on the upper half-plane R×[0,∞)\mathbb {R}\times[0,\infty).Comment: Published in at http://dx.doi.org/10.1214/11-AAP761 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore