7 research outputs found

    Miniaturized embedded stereo vision system (MESVS)

    Get PDF
    Stereo vision is one of the fundamental problems of computer vision. It is also one of the oldest and heavily investigated areas of 3D vision. Recent advances of stereo matching methodologies and availability of high performance and efficient algorithms along with availability of fast and affordable hardware technology, have allowed researchers to develop several stereo vision systems capable of operating at real-time. Although a multitude of such systems exist in the literature, the majority of them concentrates only on raw performance and quality rather than factors such as dimension, and power requirement, which are of significant importance in the embedded settings. In this thesis a new miniaturized embedded stereo vision system (MESVS) is presented, which is miniaturized to fit within a package of 5x5cm, is power efficient, and cost-effective. Furthermore, through application of embedded programming techniques and careful optimization, MESVS achieves the real-time performance of 20 frames per second. This work discusses the various challenges involved regarding design and implementation of this system and the measures taken to tackle them

    Design and implementation of a real-time miniaturized embedded stereo-vision system

    Get PDF
    The main motivation of the thesis is to develop a fully integrated, modular, small baseline (\u3c=3cm), low cost (\u3c=CAD$600), real-time miniaturized embedded stereo-vision system which fits within 5x5cm and consumes very low power ([email protected]). The system consists of two small profile cameras and a dualcore embedded media processor, running at 600MHz per core. The stereo-matching engine performs sub-sampling, rectification, pre-processing using census transform, correlation-based Sum of Hamming Distance matching using three levels of recursion, LRC check and post-processing. The novel post processing algorithm removes outliers due to low-texture regions and depth-discontinuities. A quantitative performance of the post processing algorithm is presented which shows that for all regions, it has an average percentage improvement of 13.61% (based on 2006 Middlebury dataset). To further enhance the performance of the system, optimization steps are employed to achieve a speed of around 10fps for disparity maps in MESVS-I and 20fps in MESVS-II system

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field

    Food Recognition and Volume Estimation in a Dietary Assessment System

    Full text link
    Recently obesity has become an epidemic and one of the most serious worldwide public health concerns of the 21st century. Obesity diminishes the average life expectancy and there is now convincing evidence that poor diet, in combination with physical inactivity are key determinants of an individual s risk of developing chronic diseases such as cancer, cardiovascular disease or diabetes. Assessing what people eat is fundamental to establishing the link between diet and disease. Food records are considered the best approach for assessing energy intake. However, this method requires literate and highly motivated subjects. This is a particular problem for adolescents and young adults who are the least likely to undertake food records. The ready access of the majority of the population to mobile phones (with integrated camera, improved memory capacity, network connectivity and faster processing capability) has opened up new opportunities for dietary assessment. The dietary information extracted from dietary assessment provide valuable insights into the cause of diseases that greatly helps practicing dietitians and researchers to develop subsequent approaches for mounting intervention programs for prevention. In such systems, the camera in the mobile phone is used for capturing images of food consumed and these images are then processed to automatically estimate the nutritional content of the food. However, food objects are deformable objects that exhibit variations in appearance, shape, texture and color so the food classification and volume estimation in these systems suffer from lower accuracy. The improvement of the food recognition accuracy and volume estimation accuracy are challenging tasks. This thesis presents new techniques for food classification and food volume estimation. For food recognition, emphasis was given to texture features. The existing food recognition techniques assume that the food images will be viewed at similar scales and from the same viewpoints. However, this assumption fails in practical applications, because it is difficult to ensure that a user in a dietary assessment system will put his/her camera at the same scale and orientation to capture food images as that of the target food images in the database. A new scale and rotation invariant feature generation approach that applies Gabor filter banks is proposed. To obtain scale and rotation invariance, the proposed approach identifies the dominant orientation of the filtered coefficient and applies a circular shifting operation to place this value at the first scale of dominant direction. The advantages of this technique are it does not require the scale factor to be known in advance and it is scale/and rotation invariant separately and concurrently. This approach is modified to achieve improved accuracy by applying a Gaussian window along the scale dimension which reduces the impact of high and low frequencies of the filter outputs enabling better matching between the same classes. Besides automatic classification, semi automatic classification and group classification are also considered to have an idea about the improvement. To estimate the volume of a food item, a stereo pair is used to recover the structure as a 3D point cloud. A slice based volume estimation approach is proposed that converts the 3D point cloud to a series of 2D slices. The proposed approach eliminates the problem of knowing the distance between two cameras with the help of disparities and depth information from a fiducial marker. The experimental results show that the proposed approach can provide an accurate estimate of food volume
    corecore