116 research outputs found

    Application of Lidar Altimetry and Hyperspectral Imaging to Ice Sheet and Snow Monitoring

    Full text link
    The Greenland Ice Sheet (GrIS) is of tremendous importance for climate change projections. The GrIS has contributed an estimated 10.8 mm to sea level rise since 1992, and that contribution is expected to increase in the coming decades. It is therefore essential to make routine measurements of ice, meltwater, and snow over the GrIS using satellite and airborne observations. Two prominent methods for ice sheet monitoring include lidar altimetry and hyperspectral imaging. Lidar altimetry is typically used to make fine-scale estimates of ice sheet surface height, whereas hyperspectral imaging is commonly utilized to infer snow or ice surface composition. In this dissertation, I use data from the Ice, Clouds, and land Elevation Satellite-2 (ICESat-2) and the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) to examine light transmittance over the Greenland Ice Sheet. I first utilize ICESat-2 photon-counting data for the development of a retrieval algorithm for supraglacial lake depth, with validation from the Operation IceBridge airborne mission. This work was performed to support other depth retrieval efforts that struggle with attenuation in deep water. I then use hyperspectral radiative transfer models to perform a sensitivity analysis on snow grain size retrievals. Snow grain size is an important metric for snowpack evolution, but there are limited efforts to quantify potential errors in an existing inversion algorithm. Lastly, I used a combination of Operation IceBridge altimetry and AVIRIS-NG hyperspectral data to assess the impacts of snow grain size on surface heights derived from lidar altimetry. Results from the three studies indicate that lidar signals and ice reflectance in the near-infrared are highly sensitive to changes in surface media. Because it operates at 532 nm, the ICESat-2 laser penetrates through liquid water with minimal signal loss, but volumetric scattering within a snowpack may induce significant errors in surface heights derived from Operation IceBridge, especially at large snow grain sizes. The ICESat-2 laser is susceptible to noise from clouds and rough surface topography, so additional work is needed to accurately identify supraglacial lake beds and volumetric scattering caused by snow. Also, the near-infrared spectrum of snow is highly sensitive to changes in solar geometry and to the presence of dust, therefore increasing uncertainties in snow grain size retrievals. Co-dependencies between snowpack perturbations were not considered, but I speculate that snow particle shape and snow impurities will impact the angular distribution of radiation reflected from a snowpack. I expect that the research presented here will motivate the development of improved algorithms for supraglacial lake depth, snow grain size, and lidar altimetry bias.PHDClimate and Space Sciences and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169872/1/zhfair_1.pd

    An end-to-end hyperspectral scene simulator with alternate adjacency effect models and its comparison with cameoSim

    Get PDF
    In this research, we developed a new rendering-based end to end Hyperspectral scene simulator CHIMES (Cranfield Hyperspectral Image Modelling and Evaluation System), which generates nadir images of passively illuminated 3-D outdoor scenes in Visible, Near Infrared (NIR) and Short-Wave Infrared (SWIR) regions, ranging from 360 nm to 2520 nm. MODTRAN TM (MODerate resolution TRANsmission), is used to generate the sky-dome environment map which includes sun and sky radiance along with the polarisation effect of the sky due to Rayleigh scattering. Moreover, we perform path tracing and implement ray interaction with medium and volumetric backscattering at rendering time to model the adjacency effect. We propose two variants of adjacency models, the first one incorporates a single spectral albedo as the averaged background of the scene, this model is called the Background One-Spectra Adjacency Effect Model (BOAEM), which is a CameoSim like model created for performance comparison. The second model calculates background albedo from a pixel’s neighbourhood, whose size depends on the air volume between sensor and target, and differential air density up to sensor altitude. Average background reflectance of all neighbourhood pixel is computed at rendering time for estimating the total upwelled scattered radiance, by volumetric scattering. This model is termed the Texture-Spectra Incorporated Adjacency Effect Model (TIAEM). Moreover, for estimating the underlying atmospheric condition MODTRAN is run with varying aerosol optical thickness and its total ground reflected radiance (TGRR) is compared with TGRR of known in-scene material. The Goodness of fit is evaluated in each iteration, and MODTRAN’s output with the best fit is selected. We perform a tri-modal validation of simulators on a real hyperspectral scene by varying atmospheric condition, terrain surface models and proposed variants of adjacency models. We compared results of our model with Lockheed Martin’s well-established scene simulator CameoSim and acquired Ground Truth (GT) by Hyspex cameras. In clear-sky conditions, both models of CHIMES and CameoSim are in close agreement, however, in searched overcast conditions CHIMES BOAEM is shown to perform better than CameoSim in terms of ℓ1 -norm error of the whole scene with respect to GT. TIAEM produces better radiance shape and covariance of background statistics with respect to Ground Truth (GT), which is key to good target detection performance. We also report that the results of CameoSim have a many-fold higher error for the same scene when the flat surface terrain is replaced with a Digital Elevation Model (DEM) based rugged one

    Automated proximal sensing for estimation of the bidirectional reflectance distribution function in a Mediterranean tree-grass ecosystem

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2015-2016Los sistemas automáticos de proximal sensing permiten adquirir información espectral de las cubiertas terrestres elevada frecuencia temporal, que puede relacionarse con observaciones remotas o de otros tipos de sensores como los sistemas de eddy covariance. Si bien inicialmente los sistemas automáticos empleaban sensores multi-banda, en los últimos años se ha incrementado el uso de sensores hiperespectrales. Si bien estos sensores ofrecen información redundante y de alta resolución espectral, las mediciones están sujetas a múltiples fuentes de incertidumbre; tanto instrumentales (dependencias de la temperatura o el nivel de señal) como direccionales (dependencia de la geometría de observación e iluminación). Las dependencias instrumentales pueden ser minimizadas, por ejemplo, controlando la temperatura del instrumento o el nivel de señal registrado. En otros casos, es necesario parametrizar y emplear modelos para corregir los datos. En la presente tesis doctoral los capítulos 1 al 3 presentan la caracterización completa de un espectrómetro de campo instalado en un sistema automático. Los capítulos 1 y 2 analizan las fuentes de no linealidad en este instrumento, una de las cuales no había sido anteriormente descrita en este tipo de instrumentos. El tercer capítulo muestra el conjunto completo de modelos de corrección de los efectos instrumentales y la cadena de procesado correspondiente. Por otro lado, los sistemas automáticos se enfrentan a efectos direccionales ya que adquieren mediciones continuamente durante el ciclo solar diario y bajo cualquier condición de iluminación. Esto maximiza los rangos de los ángulos de iluminación y también de la fracción difusa de la irradiancia. Esta variabilidad de condiciones de iluminación, combinada con una variación de los ángulos de observación permite obtener la información necesaria para caracterizar las respuestas direccionales de la cubierta observada. Algunos sistemas automáticos multi-angulares ya han sido empleados para realizar esta caracterización mediante la estimación de la Función de Distribución de Reflectividad Bidireccional (BRDF) en ecosistemas homogéneos. Sin embargo, esto no se ha conseguido aún en áreas heterogéneas, como es el caso de los ecosistemas tree-grass o de sabana. Así mismo, los trabajos previos no han considerado los efectos de la radiación difusa en el estudio del BRDF. En el capítulo 4 proponemos una metodología que permite desmezclar y caracterizar simultáneamente la función de distribución de reflectividad hemisférica-direccional de las dos cubiertas de vegetación presentes en el ecosistema, pasto y arbolado. También se analizan los efectos de las diferentes características del método. Finalmente, los resultados se escalan y se comparan con productos globales de satélite como el producto BRDF de MODIS. La conclusión obtenida es que se requieren más esfuerzos en el desarrollo y caracterización de sensores hiperespectrales instalados en sistemas automáticos de campo. Estos sistemas deberían adoptar configuraciones multi-angulares de modo que puedan caracterizarse las respuestas direccionales. Para ello, será necesario considerar los efectos de la radiación difusa; y en algunos casos también la heterogeneidad de la escena

    Automated proximal sensing for estimation of the bidirectional reflectance distribution function in a Mediterranean tree-grass ecosystem

    Get PDF
    Premio Extraordinario de Doctorado de la UAH en el año académico 2015-2016Los sistemas automáticos de proximal sensing permiten adquirir información espectral de las cubiertas terrestres elevada frecuencia temporal, que puede relacionarse con observaciones remotas o de otros tipos de sensores como los sistemas de eddy covariance. Si bien inicialmente los sistemas automáticos empleaban sensores multi-banda, en los últimos años se ha incrementado el uso de sensores hiperespectrales. Si bien estos sensores ofrecen información redundante y de alta resolución espectral, las mediciones están sujetas a múltiples fuentes de incertidumbre; tanto instrumentales (dependencias de la temperatura o el nivel de señal) como direccionales (dependencia de la geometría de observación e iluminación). Las dependencias instrumentales pueden ser minimizadas, por ejemplo, controlando la temperatura del instrumento o el nivel de señal registrado. En otros casos, es necesario parametrizar y emplear modelos para corregir los datos. En la presente tesis doctoral los capítulos 1 al 3 presentan la caracterización completa de un espectrómetro de campo instalado en un sistema automático. Los capítulos 1 y 2 analizan las fuentes de no linealidad en este instrumento, una de las cuales no había sido anteriormente descrita en este tipo de instrumentos. El tercer capítulo muestra el conjunto completo de modelos de corrección de los efectos instrumentales y la cadena de procesado correspondiente. Por otro lado, los sistemas automáticos se enfrentan a efectos direccionales ya que adquieren mediciones continuamente durante el ciclo solar diario y bajo cualquier condición de iluminación. Esto maximiza los rangos de los ángulos de iluminación y también de la fracción difusa de la irradiancia. Esta variabilidad de condiciones de iluminación, combinada con una variación de los ángulos de observación permite obtener la información necesaria para caracterizar las respuestas direccionales de la cubierta observada. Algunos sistemas automáticos multi-angulares ya han sido empleados para realizar esta caracterización mediante la estimación de la Función de Distribución de Reflectividad Bidireccional (BRDF) en ecosistemas homogéneos. Sin embargo, esto no se ha conseguido aún en áreas heterogéneas, como es el caso de los ecosistemas tree-grass o de sabana. Así mismo, los trabajos previos no han considerado los efectos de la radiación difusa en el estudio del BRDF. En el capítulo 4 proponemos una metodología que permite desmezclar y caracterizar simultáneamente la función de distribución de reflectividad hemisférica-direccional de las dos cubiertas de vegetación presentes en el ecosistema, pasto y arbolado. También se analizan los efectos de las diferentes características del método. Finalmente, los resultados se escalan y se comparan con productos globales de satélite como el producto BRDF de MODIS. La conclusión obtenida es que se requieren más esfuerzos en el desarrollo y caracterización de sensores hiperespectrales instalados en sistemas automáticos de campo. Estos sistemas deberían adoptar configuraciones multi-angulares de modo que puedan caracterizarse las respuestas direccionales. Para ello, será necesario considerar los efectos de la radiación difusa; y en algunos casos también la heterogeneidad de la escena

    The spectral and chemical measurement of pollutants on snow near South Pole, Antarctica

    Get PDF
    Remote sensing of light-absorbing particles (LAPs), or dark colored impurities, such as black carbon (BC) and dust on snow, is a key remaining challenge in cryospheric surface characterization and application to snow, ice, and climate models. We present a quantitative data set of in situ snow reflectance, measured and modeled albedo, and BC and trace element concentrations from clean to heavily fossil fuel emission contaminated snow near South Pole, Antarctica. Over 380 snow reflectance spectra (350–2500 nm) and 28 surface snow samples were collected at seven distinct sites in the austral summer season of 2014–2015. Snow samples were analyzed for BC concentration via a single particle soot photometer and for trace element concentration via an inductively coupled plasma mass spectrometer. Snow impurity concentrations ranged from 0.14 to 7000 part per billion (ppb) BC, 9.5 to 1200 ppb sulfur, 0.19 to 660 ppb iron, 0.013 to 1.9 ppb chromium, 0.13 to 120 ppb copper, 0.63 to 6.3 ppb zinc, 0.45 to 82 parts per trillion (ppt) arsenic, 0.0028 to 6.1 ppb cadmium, 0.062 to 22 ppb barium, and 0.0044 to 6.2 ppb lead. Broadband visible to shortwave infrared albedo ranged from 0.85 in pristine snow to 0.62 in contaminated snow. LAP radiative forcing, the enhanced surface absorption due to BC and trace elements, spanned from \u3c1 W m­–2 for clean snow to ~70 W m­–2 for snow with high BC and trace element content. Measured snow reflectance differed from modeled snow albedo due to specific impurity-dependent absorption features, which we recommend be further studied and improved in snow albedo models

    Improved estimation of surface biophysical parameters through inversion of linear BRDF models

    Get PDF

    Direct reflectance transformation methodology for drone-based hyperspectral imaging

    Get PDF
    Multi- and hyperspectral cameras on drones can be valuable tools in environmental monitoring. A significant shortcoming complicating their usage in quantitative remote sensing applications is insufficient robust radiometric calibration methods. In a direct reflectance transformation method, the drone is equipped with a camera and an irradiance sensor, allowing transformation of image pixel values to reflectance factors without ground reference data. This method requires the sensors to be calibrated with higher accuracy than what is usually required by the empirical line method (ELM), but consequently it offers benefits in robustness, ease of operation, and ability to be used on Beyond-Visual Line of Sight flights. The objective of this study was to develop and assess a drone-based workflow for direct reflectance transformation and implement it on our hyperspectral remote sensing system. A novel atmospheric correction method is also introduced, using two reference panels, but, unlike in the ELM, the correction is not directly affected by changes in the illumination. The sensor system consists of a hyperspectral camera (Rikola HSI, by Senop) and an onboard irradiance spectrometer (FGI AIRS), which were both given thorough radiometric calibrations. In laboratory tests and in a flight experiment, the FGI AIRS tilt-corrected irradiances had accuracy better than 1.9% at solar zenith angles up to 70◦. The system’s lowaltitude reflectance factor accuracy was assessed in a flight experiment using reflectance reference panels, where the normalized root mean square errors (NRMSE) were less than ±2% for the light panels (25% and 50%) and less than ±4% for the dark panels (5% and 10%). In the high-altitude images, taken at 100–150 m altitude, the NRMSEs without atmospheric correction were within 1.4%–8.7% for VIS bands and 2.0%–18.5% for NIR bands. Significant atmospheric effects appeared already at 50 m flight altitude. The proposed atmospheric correction was found to be practical and it decreased the high-altitude NRMSEs to 1.3%–2.6% for VIS bands and to 2.3%– 5.3% for NIR bands. Overall, the workflow was found to be efficient and to provide similar accuracies as the ELM, but providing operational advantages in such challenging scenarios as in forest monitoring, large-scale autonomous mapping tasks, and real-time applications. Tests in varying illumination conditions showed that the reflectance factors of the gravel and vegetation targets varied up to 8% between sunny and cloudy conditions due to reflectance anisotropy effects, while the direct reflectance workflow had better accuracy. This suggests that the varying illumination conditions have to be further accounted for in drone-based in quantitative remote sensing applications

    Influence of snow properties on directional surface reflectance in Antarctica

    Get PDF
    The significance of the polar regions for the Earth’s climate system and their observed amplified response to climate change indicate the necessity for high temporal and spatial coverage for the monitoring of the reflective properties of snow surfaces and their influencing factors. Therefore, the specific surface area (SSA, as a proxy for snow grain size) and the hemispherical directional reflectance factor (HDRF) of snow were measured for a 2-month period in central Antarctica (Kohnen research station) during austral summer 2013/14. The SSA data were retrieved on the basis of ground-based spectral surface albedo measurements collected by the COmpact RAdiation measurement System (CORAS) and airborne observations with the Spectral Modular Airborne Radiation measurement sysTem (SMART). The snow grain size and pollution amount (SGSP) algorithm, originally developed to analyze spaceborne reflectance measurements by the MODerate Resolution Imaging Spectroradiometer (MODIS), was modified in order to reduce the impact of the solar zenith angle on the retrieval results and to cover measurements in overcast conditions. Spectral ratios of surface albedo at 1280 and 1100 nm wavelength were used to reduce the retrieval uncertainty. The retrieval was applied to the ground-based and airborne observations and validated against optical in situ observations of SSA utilizing an IceCube device. The SSA retrieved from CORAS observations varied between 29 and 96 m2 kg-1. Snowfall events caused distinct relative maxima of the SSA which were followed by a gradual decrease in SSA due to snow metamorphism and wind-induced transport of freshly fallen ice crystals. The ability of the modified algorithm to include measurements in overcast conditions improved the data coverage, in particular at times when precipitation events occurred and the SSA changed quickly. SSA retrieved from measurements with CORAS and MODIS agree with the in situ observations within the ranges given by the measurement uncertainties. However, SSA retrieved from the airborne SMART data underestimated the ground-based results. The spatial variability of SSA in Dronning Maud Land ranged in the same order of magnitude as the temporal variability revealing differences between coastal areas and regions in interior Antarctica. The validation presented in this study provided an unique test bed for retrievals of SSA under Antarctic conditions where in situ data are scarce and can be used for testing prognostic snowpack models in Antarctic conditions. The HDRF of snow was derived from airborne measurements of a digital 180° fish-eye camera for a variety of conditions with different surface roughness, snow grain size, and solar zenith angle. The camera provides radiance measurements with high angular resolution utilizing detailed radiometric and geometric calibrations. The comparison between smooth and rough surfaces (sastrugi) showed significant differences in the HDRF of snow, which are superimposed on the diurnal cycle. By inverting a semi-empirical kernel-driven model for the bidirectional reflectance distribution function (BRDF), the snow HDRF was parameterized with respect to surface roughness, snow grain size, and solar zenith angle. This allows a direct comparison of the HDRF measurements with BRDF products from satellite remote sensing
    corecore