913 research outputs found

    Practical Reasoning for Very Expressive Description Logics

    Full text link
    Description Logics (DLs) are a family of knowledge representation formalisms mainly characterised by constructors to build complex concepts and roles from atomic ones. Expressive role constructors are important in many applications, but can be computationally problematical. We present an algorithm that decides satisfiability of the DL ALC extended with transitive and inverse roles and functional restrictions with respect to general concept inclusion axioms and role hierarchies; early experiments indicate that this algorithm is well-suited for implementation. Additionally, we show that ALC extended with just transitive and inverse roles is still in PSPACE. We investigate the limits of decidability for this family of DLs, showing that relaxing the constraints placed on the kinds of roles used in number restrictions leads to the undecidability of all inference problems. Finally, we describe a number of optimisation techniques that are crucial in obtaining implementations of the decision procedures, which, despite the worst-case complexity of the problem, exhibit good performance with real-life problems

    Type-elimination-based reasoning for the description logic SHIQbs using decision diagrams and disjunctive datalog

    Get PDF
    We propose a novel, type-elimination-based method for reasoning in the description logic SHIQbs including DL-safe rules. To this end, we first establish a knowledge compilation method converting the terminological part of an ALCIb knowledge base into an ordered binary decision diagram (OBDD) which represents a canonical model. This OBDD can in turn be transformed into disjunctive Datalog and merged with the assertional part of the knowledge base in order to perform combined reasoning. In order to leverage our technique for full SHIQbs, we provide a stepwise reduction from SHIQbs to ALCIb that preserves satisfiability and entailment of positive and negative ground facts. The proposed technique is shown to be worst case optimal w.r.t. combined and data complexity and easily admits extensions with ground conjunctive queries.Comment: 38 pages, 3 figures, camera ready version of paper accepted for publication in Logical Methods in Computer Scienc

    DFKI publications : the first four years ; 1990 - 1993

    Get PDF

    Progress Report : 1991 - 1994

    Get PDF

    Resolution-based decision procedures for subclasses of first-order logic

    Get PDF
    This thesis studies decidable fragments of first-order logic which are relevant to the field of nonclassical logic and knowledge representation. We show that refinements of resolution based on suitable liftable orderings provide decision procedures for the subclasses E+, K, and DK of first-order logic. By the use of semantics-based translation methods we can embed the description logic ALB and extensions of the basic modal logic K into fragments of first-order logic. We describe various decision procedures based on ordering refinements and selection functions for these fragments and show that a polynomial simulation of tableaux-based decision procedures for these logics is possible. In the final part of the thesis we develop a benchmark suite and perform an empirical analysis of various modal theorem provers.Diese Arbeit untersucht entscheidbare Fragmente der Logik erster Stufe, die mit nicht-klassischen Logiken und Wissensrepräsentationsformalismen im Zusammenhang stehen. Wir zeigen, daß Entscheidungsverfahren für die Teilklassen E+, K, und DK der Logik erster Stufe unter Verwendung von Resolution eingeschränkt durch geeignete liftbare Ordnungen realisiert werden können. Durch Anwendung von semantikbasierten Übersetzungsverfahren lassen sich die Beschreibungslogik ALB und Erweiterungen der Basismodallogik K in Teilklassen der Logik erster Stufe einbetten. Wir stellen eine Reihe von Entscheidungsverfahren auf der Basis von Resolution eingeschränkt durch liftbare Ordnungen und Selektionsfunktionen für diese Logiken vor und zeigen, daß eine polynomielle Simulation von tableaux-basierten Entscheidungsverfahren für diese Logiken möglich ist. Im abschließenden Teil der Arbeit führen wir eine empirische Untersuchung der Performanz verschiedener modallogischer Theorembeweiser durch

    Complexity Results and Practical Algorithms for Logics in Knowledge Representation

    Get PDF
    Description Logics (DLs) are used in knowledge-based systems to represent and reason about terminological knowledge of the application domain in a semantically well-defined manner. In this thesis, we establish a number of novel complexity results and give practical algorithms for expressive DLs that provide different forms of counting quantifiers. We show that, in many cases, adding local counting in the form of qualifying number restrictions to DLs does not increase the complexity of the inference problems, even if binary coding of numbers in the input is assumed. On the other hand, we show that adding different forms of global counting restrictions to a logic may increase the complexity of the inference problems dramatically. We provide exact complexity results and a practical, tableau based algorithm for the DL SHIQ, which forms the basis of the highly optimized DL system iFaCT. Finally, we describe a tableau algorithm for the clique guarded fragment (CGF), which we hope will serve as the basis for an efficient implementation of a CGF reasoner.Comment: Ph.D. Thesi
    corecore