2,884 research outputs found

    Automated quantification and evaluation of motion artifact on coronary CT angiography images

    Get PDF
    Abstract Purpose This study developed and validated a Motion Artifact Quantification algorithm to automatically quantify the severity of motion artifacts on coronary computed tomography angiography (CCTA) images. The algorithm was then used to develop a Motion IQ Decision method to automatically identify whether a CCTA dataset is of sufficient diagnostic image quality or requires further correction. Method The developed Motion Artifact Quantification algorithm includes steps to identify the right coronary artery (RCA) regions of interest (ROIs), segment vessel and shading artifacts, and to calculate the motion artifact score (MAS) metric. The segmentation algorithms were verified against ground‐truth manual segmentations. The segmentation algorithms were also verified by comparing and analyzing the MAS calculated from ground‐truth segmentations and the algorithm‐generated segmentations. The Motion IQ Decision algorithm first identifies slices with unsatisfactory image quality using a MAS threshold. The algorithm then uses an artifact‐length threshold to determine whether the degraded vessel segment is large enough to cause the dataset to be nondiagnostic. An observer study on 30 clinical CCTA datasets was performed to obtain the ground‐truth decisions of whether the datasets were of sufficient image quality. A five‐fold cross‐validation was used to identify the thresholds and to evaluate the Motion IQ Decision algorithm. Results The automated segmentation algorithms in the Motion Artifact Quantification algorithm resulted in Dice coefficients of 0.84 for the segmented vessel regions and 0.75 for the segmented shading artifact regions. The MAS calculated using the automated algorithm was within 10% of the values obtained using ground‐truth segmentations. The MAS threshold and artifact‐length thresholds were determined by the ROC analysis to be 0.6 and 6.25 mm by all folds. The Motion IQ Decision algorithm demonstrated 100% sensitivity, 66.7% ± 27.9% specificity, and a total accuracy of 86.7% ± 12.5% for identifying datasets in which the RCA required correction. The Motion IQ Decision algorithm demonstrated 91.3% sensitivity, 71.4% specificity, and a total accuracy of 86.7% for identifying CCTA datasets that need correction for any of the three main vessels. Conclusion The Motion Artifact Quantification algorithm calculated accurate

    Vessel tractography using an intensity based tensor model with branch detection

    Get PDF
    In this paper, we present a tubular structure seg- mentation method that utilizes a second order tensor constructed from directional intensity measurements, which is inspired from diffusion tensor image (DTI) modeling. The constructed anisotropic tensor which is fit inside a vessel drives the segmen- tation analogously to a tractography approach in DTI. Our model is initialized at a single seed point and is capable of capturing whole vessel trees by an automatic branch detection algorithm developed in the same framework. The centerline of the vessel as well as its thickness is extracted. Performance results within the Rotterdam Coronary Artery Algorithm Evaluation framework are provided for comparison with existing techniques. 96.4% average overlap with ground truth delineated by experts is obtained in addition to other measures reported in the paper. Moreover, we demonstrate further quantitative results over synthetic vascular datasets, and we provide quantitative experiments for branch detection on patient Computed Tomography Angiography (CTA) volumes, as well as qualitative evaluations on the same CTA datasets, from visual scores by a cardiologist expert

    Automation Process for Morphometric Analysis of Volumetric CT Data from Pulmonary Vasculature in Rats

    Get PDF
    With advances in medical imaging scanners, it has become commonplace to generate large multidimensional datasets. These datasets require tools for a rapid, thorough analysis. To address this need, we have developed an automated algorithm for morphometric analysis incorporating A Visualization Workshop computational and image processing libraries for three-dimensional segmentation, vascular tree generation and structural hierarchical ordering with a two-stage numeric optimization procedure for estimating vessel diameters. We combine this new technique with our mathematical models of pulmonary vascular morphology to quantify structural and functional attributes of lung arterial trees. Our physiological studies require repeated measurements of vascular structure to determine differences in vessel biomechanical properties between animal models of pulmonary disease. Automation provides many advantages including significantly improved speed and minimized operator interaction and biasing. The results are validated by comparison with previously published rat pulmonary arterial micro-CT data analysis techniques, in which vessels were manually mapped and measured using intense operator intervention

    Semiautomated Skeletonization of the Pulmonary Arterial Tree in Micro-CT Images

    Get PDF
    We present a simple and robust approach that utilizes planar images at different angular rotations combined with unfiltered back-projection to locate the central axes of the pulmonary arterial tree. Three-dimensional points are selected interactively by the user. The computer calculates a sub- volume unfiltered back-projection orthogonal to the vector connecting the two points and centered on the first point. Because more x-rays are absorbed at the thickest portion of the vessel, in the unfiltered back-projection, the darkest pixel is assumed to be the center of the vessel. The computer replaces this point with the newly computer-calculated point. A second back-projection is calculated around the original point orthogonal to a vector connecting the newly-calculated first point and user-determined second point. The darkest pixel within the reconstruction is determined. The computer then replaces the second point with the XYZ coordinates of the darkest pixel within this second reconstruction. Following a vector based on a moving average of previously determined 3- dimensional points along the vessel\u27s axis, the computer continues this skeletonization process until stopped by the user. The computer estimates the vessel diameter along the set of previously determined points using a method similar to the full width-half max algorithm. On all subsequent vessels, the process works the same way except that at each point, distances between the current point and all previously determined points along different vessels are determined. If the difference is less than the previously estimated diameter, the vessels are assumed to branch. This user/computer interaction continues until the vascular tree has been skeletonized

    Quantitative imaging in cardiovascular CT angiography

    Get PDF
    In de afgelopen decennia is computertomografie (CT) een prominente niet-invasieve modaliteit om hart- en vaatziekten te evalueren geworden. Dit proefschrift heeft als doel de rol van CT in de therapeutische behandeling van coronaire hartziekte (CAD) en klepaandoeningen te onderzoeken.De relatie tussen kransslagadergeometrie (statisch en dynamisch) en aanwezigheid en omvang van CAD met CT werd onderzocht. De resultaten suggereren dat de statische geometrie van de kransslagader significant gerelateerd is aan de aanwezigheid van plaque en stenose. Er was echter geen verband tussen dynamische verandering van de coronaire arterie-geometrie en de ernst van CAD. Een algoritme om de invloed van intraluminair contrastmiddel op niet-verkalkte atherosclerotische plaque Hounsfield-Unit-waarden te corrigeren werd gepresenteerd en gevalideerd met behulp van fantomen.Diagnose en operatieplanning kunnen cruciale gevolgen hebben voor de klinische uitkomst van chirurgische ingrepen. In dit proefschrift wordt beschreven dat halfautomatische softwareprogramma’s het kwantificeren van het aortaklepgebied betere reproduceerbare resultaten toonden in vergelijking met handmatige metingen, en vergelijkbare resultaten met de huidige gouden standaard, de echocardiografie. Een systematische review over het dynamische gedrag van de aorta-annulus toont aan dat de vorm van de aorta-annulus tijdens de hartcyclus verandert, wat impliceert dat er bij het bepalen van een prothese rekening moet worden gehouden met meerdere fasen. Een andere review beschrijft het gebruik van 3D-printen in de chirurgische planning samen met andere toepassingen voor de behandeling van hartklepaandoeningen.CT is de belangrijkste beeldvormingsmodaliteit in deze onderzoeken, die gericht waren op de therapeutische behandeling van hart- en vaatziekten, van vroege risicobepaling tot diagnose en chirurgische planning.In the recent decades computed tomography (CT) has emerged as a dominant non-invasive modality to evaluate cardiovascular diseases. This thesis aimed to explore the role of CT in the therapeutic management of coronary artery disease (CAD) and valvular diseases.The relationship between both static and dynamic coronary artery geometry and presence and extent of CAD using CT was investigated. The results suggest that the static coronary artery geometry is significantly related to presence of plaque and significant stenosis. However, there were no such relationship between dynamic change of coronary artery geometry and severity of CAD. As part of this thesis an algorithm to correct the influence of lumen contrast enhancement on non-calcified atherosclerotic plaque Hounsfield-Unit values was presented. The algorithm was validated using phantoms. The diagnosis and surgical planning may have crucial impact on clinical outcome. Semi-automatic software for aortic valve area quantification presented in this thesis was proven to be more repeatable and similar to gold standard echocardiography in comparison to manual measurements. The systematic review regarding the dynamic behavior of aortic annulus revealed that aortic annulus geometry changes throughout the cardiac cycle which implies that multiple phases should be taken into account for prosthesis sizing. Another review in this thesis discusses the use of 3D printing in the surgical planning along with other applications for the treatment of valvular diseases.CT is the main imaging modality in these studies which were focused on the therapeutic management of cardiovascular diseases from early risk determination to diagnosis and surgical planning

    Joint segmentation and classification of retinal arteries/veins from fundus images

    Full text link
    Objective Automatic artery/vein (A/V) segmentation from fundus images is required to track blood vessel changes occurring with many pathologies including retinopathy and cardiovascular pathologies. One of the clinical measures that quantifies vessel changes is the arterio-venous ratio (AVR) which represents the ratio between artery and vein diameters. This measure significantly depends on the accuracy of vessel segmentation and classification into arteries and veins. This paper proposes a fast, novel method for semantic A/V segmentation combining deep learning and graph propagation. Methods A convolutional neural network (CNN) is proposed to jointly segment and classify vessels into arteries and veins. The initial CNN labeling is propagated through a graph representation of the retinal vasculature, whose nodes are defined as the vessel branches and edges are weighted by the cost of linking pairs of branches. To efficiently propagate the labels, the graph is simplified into its minimum spanning tree. Results The method achieves an accuracy of 94.8% for vessels segmentation. The A/V classification achieves a specificity of 92.9% with a sensitivity of 93.7% on the CT-DRIVE database compared to the state-of-the-art-specificity and sensitivity, both of 91.7%. Conclusion The results show that our method outperforms the leading previous works on a public dataset for A/V classification and is by far the fastest. Significance The proposed global AVR calculated on the whole fundus image using our automatic A/V segmentation method can better track vessel changes associated to diabetic retinopathy than the standard local AVR calculated only around the optic disc.Comment: Preprint accepted in Artificial Intelligence in Medicin

    Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography

    Get PDF
    Coronary computed tomographic angiography (CCTA) is a non-invasive imaging modality for the visualization of the heart and coronary arteries. To fully exploit the potential of the CCTA datasets and apply it in clinical practice, an automated coronary artery extraction approach is needed. The purpose of this paper is to present and validate a fully automatic centerline extraction algorithm for coronary arteries in CCTA images. The algorithm is based on an improved version of Frangi’s vesselness filter which removes unwanted step-edge responses at the boundaries of the cardiac chambers. Building upon this new vesselness filter, the coronary artery extraction pipeline extracts the centerlines of main branches as well as side-branches automatically. This algorithm was first evaluated with a standardized evaluation framework named Rotterdam Coronary Artery Algorithm Evaluation Framework used in the MICCAI Coronary Artery Tracking challenge 2008 (CAT08). It includes 128 reference centerlines which were manually delineated. The average overlap and accuracy measures of our method were 93.7% and 0.30 mm, respectively, which ranked at the 1st and 3rd place compared to five other automatic methods presented in the CAT08. Secondly, in 50 clinical datasets, a total of 100 reference centerlines were generated from lumen contours in the transversal planes which were manually corrected by an expert from the cardiology department. In this evaluation, the average overlap and accuracy were 96.1% and 0.33 mm, respectively. The entire processing time for one dataset is less than 2 min on a standard desktop computer. In conclusion, our newly developed automatic approach can extract coronary arteries in CCTA images with excellent performances in extraction ability and accuracy

    Computational fluid dynamics indicators to improve cardiovascular pathologies

    Get PDF
    In recent years, the study of computational hemodynamics within anatomically complex vascular regions has generated great interest among clinicians. The progress in computational fluid dynamics, image processing and high-performance computing haveallowed us to identify the candidate vascular regions for the appearance of cardiovascular diseases and to predict how this disease may evolve. Medicine currently uses a paradigm called diagnosis. In this thesis we attempt to introduce into medicine the predictive paradigm that has been used in engineering for many years. The objective of this thesis is therefore to develop predictive models based on diagnostic indicators for cardiovascular pathologies. We try to predict the evolution of aortic abdominal aneurysm, aortic coarctation and coronary artery disease in a personalized way for each patient. To understand how the cardiovascular pathology will evolve and when it will become a health risk, it is necessary to develop new technologies by merging medical imaging and computational science. We propose diagnostic indicators that can improve the diagnosis and predict the evolution of the disease more efficiently than the methods used until now. In particular, a new methodology for computing diagnostic indicators based on computational hemodynamics and medical imaging is proposed. We have worked with data of anonymous patients to create real predictive technology that will allow us to continue advancing in personalized medicine and generate more sustainable health systems. However, our final aim is to achieve an impact at a clinical level. Several groups have tried to create predictive models for cardiovascular pathologies, but they have not yet begun to use them in clinical practice. Our objective is to go further and obtain predictive variables to be used practically in the clinical field. It is to be hoped that in the future extremely precise databases of all of our anatomy and physiology will be available to doctors. These data can be used for predictive models to improve diagnosis or to improve therapies or personalized treatments.En els últims anys, l'estudi de l'hemodinàmica computacional en regions vasculars anatòmicament complexes ha generat un gran interès entre els clínics. El progrés obtingut en la dinàmica de fluids computacional, en el processament d'imatges i en la computació d'alt rendiment ha permès identificar regions vasculars on poden aparèixer malalties cardiovasculars, així com predir-ne l'evolució. Actualment, la medicina utilitza un paradigma anomenat diagnòstic. En aquesta tesi s'intenta introduir en la medicina el paradigma predictiu utilitzat des de fa molts anys en l'enginyeria. Per tant, aquesta tesi té com a objectiu desenvolupar models predictius basats en indicadors de diagnòstic de patologies cardiovasculars. Tractem de predir l'evolució de l'aneurisma d'aorta abdominal, la coartació aòrtica i la malaltia coronària de forma personalitzada per a cada pacient. Per entendre com la patologia cardiovascular evolucionarà i quan suposarà un risc per a la salut, cal desenvolupar noves tecnologies mitjançant la combinació de les imatges mèdiques i la ciència computacional. Proposem uns indicadors que poden millorar el diagnòstic i predir l'evolució de la malaltia de manera més eficient que els mètodes utilitzats fins ara. En particular, es proposa una nova metodologia per al càlcul dels indicadors de diagnòstic basada en l'hemodinàmica computacional i les imatges mèdiques. Hem treballat amb dades de pacients anònims per crear una tecnologia predictiva real que ens permetrà seguir avançant en la medicina personalitzada i generar sistemes de salut més sostenibles. Però el nostre objectiu final és aconseguir un impacte en l¿àmbit clínic. Diversos grups han tractat de crear models predictius per a les patologies cardiovasculars, però encara no han començat a utilitzar-les en la pràctica clínica. El nostre objectiu és anar més enllà i obtenir variables predictives que es puguin utilitzar de forma pràctica en el camp clínic. Es pot preveure que en el futur tots els metges disposaran de bases de dades molt precises de tota la nostra anatomia i fisiologia. Aquestes dades es poden utilitzar en els models predictius per millorar el diagnòstic o per millorar teràpies o tractaments personalitzats.Postprint (published version
    corecore