148 research outputs found

    Synthesis of Digital Microfluidic Biochips with Reconfigurable Operation Execution

    Get PDF

    Compilation and Synthesis for Fault-Tolerant Digital Microfluidic Biochips

    Get PDF

    Strategic Optimization Techniques For FRTU Deployment and Chip Physical Design

    Get PDF
    Combinatorial optimization is a complex engineering subject. Although formulation often depends on the nature of problems that differs from their setup, design, constraints, and implications, establishing a unifying framework is essential. This dissertation investigates the unique features of three important optimization problems that can span from small-scale design automation to large-scale power system planning: (1) Feeder remote terminal unit (FRTU) planning strategy by considering the cybersecurity of secondary distribution network in electrical distribution grid, (2) physical-level synthesis for microfluidic lab-on-a-chip, and (3) discrete gate sizing in very-large-scale integration (VLSI) circuit. First, an optimization technique by cross entropy is proposed to handle FRTU deployment in primary network considering cybersecurity of secondary distribution network. While it is constrained by monetary budget on the number of deployed FRTUs, the proposed algorithm identi?es pivotal locations of a distribution feeder to install the FRTUs in different time horizons. Then, multi-scale optimization techniques are proposed for digital micro?uidic lab-on-a-chip physical level synthesis. The proposed techniques handle the variation-aware lab-on-a-chip placement and routing co-design while satisfying all constraints, and considering contamination and defect. Last, the first fully polynomial time approximation scheme (FPTAS) is proposed for the delay driven discrete gate sizing problem, which explores the theoretical view since the existing works are heuristics with no performance guarantee. The intellectual contribution of the proposed methods establishes a novel paradigm bridging the gaps between professional communities

    Placement and routing for cross-referencing digital microfluidic biochips.

    Get PDF
    Xiao, Zigang."October 2010."Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (leaves 62-66).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.viChapter 1 --- Introduction --- p.1Chapter 1.1 --- Microfluidic Technology --- p.2Chapter 1.1.1 --- Continuous Flow Microfluidic System --- p.2Chapter 1.1.2 --- Digital Microfluidic System --- p.2Chapter 1.2 --- Pin-Constrained Biochips --- p.4Chapter 1.2.1 --- Droplet-Trace-Based Array Partitioning Method --- p.5Chapter 1.2.2 --- Broadcast-addressing Method --- p.5Chapter 1.2.3 --- Cross-Referencing Method --- p.6Chapter 1.2.3.1 --- Electrode Interference in Cross-Referencing Biochips --- p.7Chapter 1.3 --- Computer-Aided Design Techniques for Biochip --- p.8Chapter 1.4 --- Placement Problem in Biochips --- p.8Chapter 1.5 --- Droplet Routing Problem in Cross-Referencing Biochips --- p.11Chapter 1.6 --- Our Contributions --- p.14Chapter 1.7 --- Thesis Organization --- p.15Chapter 2 --- Literature Review --- p.16Chapter 2.1 --- Introduction --- p.16Chapter 2.2 --- Previous Works on Placement --- p.17Chapter 2.2.1 --- Basic Simulated Annealing --- p.17Chapter 2.2.2 --- Unified Synthesis Approach --- p.18Chapter 2.2.3 --- Droplet-Routing-Aware Unified Synthesis Approach --- p.19Chapter 2.2.4 --- Simulated Annealing Using T-tree Representation --- p.20Chapter 2.3 --- Previous Works on Routing --- p.21Chapter 2.3.1 --- Direct-Addressing Droplet Routing --- p.22Chapter 2.3.1.1 --- A* Search Method --- p.22Chapter 2.3.1.2 --- Open Shortest Path First Method --- p.23Chapter 2.3.1.3 --- A Two Phase Algorithm --- p.24Chapter 2.3.1.4 --- Network-Flow Based Method --- p.25Chapter 2.3.1.5 --- Bypassibility and Concession Method --- p.26Chapter 2.3.2 --- Cross-Referencing Droplet Routing --- p.28Chapter 2.3.2.1 --- Graph Coloring Method --- p.28Chapter 2.3.2.2 --- Clique Partitioning Method --- p.30Chapter 2.3.2.3 --- Progressive-ILP Method --- p.31Chapter 2.4 --- Conclusion --- p.32Chapter 3 --- CrossRouter for Cross-Referencing Biochip --- p.33Chapter 3.1 --- Introduction --- p.33Chapter 3.2 --- Problem Formulation --- p.34Chapter 3.3 --- Overview of Our Method --- p.35Chapter 3.4 --- Net Order Computation --- p.35Chapter 3.5 --- Propagation Stage --- p.36Chapter 3.5.1 --- Fluidic Constraint Check --- p.38Chapter 3.5.2 --- Electrode Constraint Check --- p.38Chapter 3.5.3 --- Handling 3-pin net --- p.44Chapter 3.5.4 --- Waste Reservoir --- p.45Chapter 3.6 --- Backtracking Stage --- p.45Chapter 3.7 --- Rip-up and Re-route Nets --- p.45Chapter 3.8 --- Experimental Results --- p.46Chapter 3.9 --- Conclusion --- p.47Chapter 4 --- Placement in Cross-Referencing Biochip --- p.49Chapter 4.1 --- Introduction --- p.49Chapter 4.2 --- Problem Formulation --- p.50Chapter 4.3 --- Overview of the method --- p.50Chapter 4.4 --- Dispenser and Reservoir Location Generation --- p.51Chapter 4.5 --- Solving Placement Problem Using ILP --- p.51Chapter 4.5.1 --- Constraints --- p.53Chapter 4.5.1.1 --- Validity of modules --- p.53Chapter 4.5.1.2 --- Non-overlapping and separation of Modules --- p.53Chapter 4.5.1.3 --- Droplet-Routing length constraint --- p.54Chapter 4.5.1.4 --- Optical detector resource constraint --- p.55Chapter 4.5.2 --- Objective --- p.55Chapter 4.5.3 --- Problem Partition --- p.56Chapter 4.6 --- Pin Assignment --- p.56Chapter 4.7 --- Experimental Results --- p.57Chapter 4.8 --- Conclusion --- p.59Chapter 5 --- Conclusion --- p.60Bibliography --- p.6

    Fluigi: an end-to-end software workflow for microfluidic design

    Get PDF
    One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications with implications in health, materials, and sensing. Computational design methodologies allow for increased performance and reliability of these circuits. Major challenges that remain include increasing the scalability and robustness of engineered biological systems and streamlining and automating the synthetic biology workflow of “specify-design-build-test.” I summarize the advances in microfluidic technology, particularly microfluidic large scale integration, that can be used to address the challenges facing each step of the synthetic biology workflow for genetic circuits. Microfluidic technologies allow precise control over the flow of biological content within microscale devices, and thus may provide more reliable and scalable construction of synthetic biological systems. However, adoption of microfluidics for synthetic biology has been slow due to the expert knowledge and equipment needed to fabricate and control devices. I present an end-to-end workflow for a computer-aided-design (CAD) tool, Fluigi, for designing microfluidic devices and for integrating biological Boolean genetic circuits with microfluidics. The workflow starts with a ``netlist" input describing the connectivity of microfluidic device to be designed, and proceeds through placement, routing, and design rule checking in a process analogous to electronic computer aided design (CAD). The output is an image of the device for printing as a mask for photolithography or for computer numerical control (CNC) machining. I also introduced a second workflow to allocate biological circuits to microfluidic devices and to generate the valve control scheme to enable biological computation on the device. I used the CAD workflow to generate 15 designs including gradient generators, rotary pumps, and devices for housing biological circuits. I fabricated two designs, a gradient generator with CNC machining and a device for computing a biological XOR function with multilayer soft lithography, and verified their functions with dye. My efforts here show a first end-to-end demonstration of an extensible and foundational microfluidic CAD tool from design concept to fabricated device. This work provides a platform that when completed will automatically synthesize high level functional and performance specifications into fully realized microfluidic hardware, control software, and synthetic biological wetware

    Computer-aided design for multilayer microfluidic chips

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (leaves 63-66).Microfluidic chips fabricated by multilayer soft lithography are emerging as "lab-on-a-chip" systems that can automate biological experiments. As we are able to build more complex microfluidic chips with thousands of components, it becomes possible to build devices which can be programmatically changed to solve multiple problems. However, the current design methodology does not scale. In this thesis, we introduce design automation techniques to multilayer soft lithography microfluidics. Our work focuses on automating the design of the control layer. We present a method to define an Instruction Set Architecture as a hierarchical composition of flows. From this specification, we automatically infer and generate the logic and signals to control the chip. To complete the design automation of the control layer, we suggest a routing algorithm to connect control channels to peripheral I/O ports. To the microfluidic community, we offer a free computer-aided design tool, Micado, which implements our ideas for automation in a practical plug-in to AutoCAD. We have evaluated our work on real chips and our tool has been used successfully by microfluidic designers.by Nada Amin.M.Eng
    • …
    corecore