33,472 research outputs found

    COFOLD: an RNA secondary structure prediction method that takes co-transcriptional folding into account

    Get PDF
    Existing state-of-the-art methods that take a single RNA sequence and predict the corresponding RNA secondary structure are thermodynamic methods. These aim to predict the most stable RNA structure. There exists by now ample experimental and theoretical evidence that the process of structure formation matters and that sequences in vivo fold while they are being transcribed. None of the thermodynamic methods, however, consider the process of structure formation. Here, we present a conceptually new method for predicting RNA secondary structure, called CoFold, that takes effects of co-transcriptional folding explicitly into account. Our method significantly improves the state-of-art in terms of prediction accuracy, especially for long sequences of >1000 nt in length

    ShapeSorter: a fully probabilistic method for detecting conserved RNA structure features supported by SHAPE evidence

    Get PDF
    There is an increased interest in the determination of RNA structures in vivo as it is now possible to probe them in a high-throughput manner, e.g. using SHAPE protocols. By now, there exist a range of computational methods that integrate experimental SHAPE-probing evidence into computational RNA secondary structure prediction. The state-of-the-art in this field is currently provided by computational methods that employ the minimum-free energy strategy for prediction RNA secondary structures with SHAPE-probing evidence. These methods, however, rely on the assumption that transcripts in vivo fold into the thermodynamically most stable configuration and ignore evolutionary evidence for conserved RNA structure features. We here present a new computational method, ShapeSorter, that predicts RNA structure features without employing the thermodynamic strategy. Instead, ShapeSorter employs a fully probabilistic framework to identify RNA structure features that are supported by evolutionary and SHAPE-probing evidence. Our method can capture RNA structure heterogeneity, pseudo-knotted RNA structures as well as transient and mutually exclusive RNA structure features. Moreover, it estimates P-values for the predicted RNA structure features which allows for easy filtering and ranking. We investigate the merits of our method in a comprehensive performance benchmarking and conclude that ShapeSorter has a significantly superior performance for predicting base-pairs than the existing state-of-the-art methods

    Prediction of RNA secondary structure by maximizing pseudo-expected accuracy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have revealed the importance of considering the entire distribution of possible secondary structures in RNA secondary structure predictions; therefore, a new type of estimator is proposed including the maximum expected accuracy (MEA) estimator. The MEA-based estimators have been designed to maximize the expected accuracy of the base-pairs and have achieved the highest level of accuracy. Those methods, however, do not give the single best prediction of the structure, but employ parameters to control the trade-off between the sensitivity and the positive predictive value (PPV). It is unclear what parameter value we should use, and even the well-trained default parameter value does not, in general, give the best result in popular accuracy measures to each RNA sequence.</p> <p>Results</p> <p>Instead of using the expected values of the popular accuracy measures for RNA secondary structure prediction, which is difficult to be calculated, the <it>pseudo</it>-expected accuracy, which can easily be computed from base-pairing probabilities, is introduced. It is shown that the pseudo-expected accuracy is a good approximation in terms of sensitivity, PPV, MCC, or F-score. The pseudo-expected accuracy can be approximately maximized for each RNA sequence by stochastic sampling. It is also shown that well-balanced secondary structures between sensitivity and PPV can be predicted with a small computational overhead by combining the pseudo-expected accuracy of MCC or F-score with the γ-centroid estimator.</p> <p>Conclusions</p> <p>This study gives not only a method for predicting the secondary structure that balances between sensitivity and PPV, but also a general method for approximately maximizing the (pseudo-)expected accuracy with respect to various evaluation measures including MCC and F-score.</p

    ShapeSorter: a fully probabilistic method for detecting conserved RNA structure features supported by SHAPE evidence

    Get PDF
    There is an increased interest in the determination of RNA structures in vivo as it is now possible to probe them in a high-throughput manner, e.g. using SHAPE protocols. By now, there exist a range of computational methods that integrate experimental SHAPE-probing evidence into computational RNA secondary structure prediction. The state-of-the-art in this field is currently provided by computational methods that employ the minimum-free energy strategy for prediction RNA secondary structures with SHAPE-probing evidence. These methods, however, rely on the assumption that transcripts in vivo fold into the thermodynamically most stable configuration and ignore evolutionary evidence for conserved RNA structure features. We here present a new computational method, ShapeSorter, that predicts RNA structure features without employing the thermodynamic strategy. Instead, ShapeSorter employs a fully probabilistic framework to identify RNA structure features that are supported by evolutionary and SHAPE-probing evidence. Our method can capture RNA structure heterogeneity, pseudo-knotted RNA structures as well as transient and mutually exclusive RNA structure features. Moreover, it estimates P-values for the predicted RNA structure features which allows for easy filtering and ranking. We investigate the merits of our method in a comprehensive performance benchmarking and conclude that ShapeSorter has a significantly superior performance for predicting base-pairs than the existing state-of-the-art methods
    corecore