142 research outputs found

    Contactless measurement of electric current using magnetic sensors

    Get PDF
    We review recent advances in magnetic sensors for DC/AC current transducers, especially novel AMR sensors and integrated fluxgates, and we make critical comparison of their properties. Most contactless electric current transducers use magnetic cores to concentrate the flux generated by the measured current and to shield the sensor against external magnetic fields. In order to achieve this, the magnetic core should be massive. We present coreless current transducers which are lightweight, linear and free of hysteresis and remanence. We also show how to suppress their weak point: crosstalk from external currents and magnetic fields

    Real-time wireless, contactless and coreless monitoring of the current distribution in substation conductors for fault diagnosis

    Get PDF
    Parallel conductors are found in electrical transmission and distribution systems including large ampacity feeders or loads. However, current unbalance often occurs, especially in alternating current systems. This non-regular current distribution causes overheating and premature ageing, facilitating the occurrence of failures. Therefore, a fault diagnosis system is a must, which can be performed by monitoring in real-time the individual currents flowing through the conductors. In this paper a setup including three parallel aluminum conductors of large cross section, a spacer and two terminal substation connectors is analyzed. A real-time, wireless, coreless and contactless system based on three low cost Hall effect sensors is proposed, which is also easy to install. Experimental results, which include fourteen cases, comprising thirteen fault modes and a well installed set, prove the suitability and potential of the proposed approach, since it allows a correct real-time detection of all analyzed faulty conditions as well as the detection of currents exceeding the thermal rating of the conductors.Peer ReviewedPostprint (author's final draft

    Evaluation of Magnetic Materials for Very High Frequency Power Applications

    Get PDF
    This paper investigates the loss characteristics of RF magnetic materials for power conversion applications in the 10 to 100 MHz range. A measurement method is proposed that provides a direct measurement of an inductor quality factor QL as a function of inductor current at RF frequencies, and enables indirect calculation of core loss as a function of flux density. Possible sources of error in measurement and calculation are evaluated and addressed. The proposed method is used to identify loss characteristics of several commercial RF magnetic-core materials. The loss characteristics of these materials, which have not previously been available, are illustrated and compared in tables and figures. The use of the method and data is demonstrated in the design of a magnetic-core inductor, which is applied in a 30-MHz inverter. The results of this paper are thus useful for the design of magnetic components for very high frequency applications.Sheila and Emanuel Landsman FoundationInterconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation

    Planar Wireless Charging Technology for Portable Electronic Products and Qi

    Get PDF
    published_or_final_versio

    Modeling of Inductive Contactless Energy Transfer Systems

    Get PDF
    In the domain of electronic devices and especially desktop peripherals, there is an industrial trend which consists in removing the cables that pollute our domestic and professional environments. In this sense, wireless communication protocols are already massively widespread while the power supplies still use wires or batteries. To address this problem, alternative solutions must be investigated such as contactless energy transfer (CET). In a broad sense, CET is a process that allows to bring electrical energy from one point to another through a given medium (generally air or vacuum) and at a certain distance. Inductive CET means that the intermediate form of energy is the magnetic induction, generated from primary coils excited by high-frequency alternating currents and collected in secondary coils by induced voltages. Most of existing approaches to design CET systems are applicable to only single applications and do not include an optimization method. For this reason, the present thesis focuses on the modeling, design and optimization of inductive CET systems. Using the coreless transformer as the central part of CET systems, an equivalent electric model is derived from the theory of conventional transformers. The absence of ferrite core gives rise to a specific characteristic, which is to have large leakage inductances compared to the main one. In order to circumvent this issue, using a high frequency together with a resonant circuit allow to enhance the effect of the mutual inductance and to transfer power with an excellent efficiency. Different parts of the coreless transformer are addressed separately. First, an accurate modeling of DC resistances, self and mutual inductances is proposed. Then, the equivalent electric circuit is resolved and the different compensation topologies for the resonant circuit are discussed. Finally, the AC resistance is computed using a 2D finite element modeling that takes into account the skin and proximity effects in the conductors. So as to exploit optimally FEM simulations, a complete output mapping together with a specific interpolation strategy are implemented, giving access to the AC resistance evaluation in a very short time. As a result, all the models are implemented in a way that makes them highly adaptable and low-consuming in term of computing resources. Then a sensitivity analyzis is performed in order to restrict the variation range of different parameters and to provide a general and intuitive understanding of inductive CET. After that, an optimization method using genetic algorithms (GAs) is presented. The main advantage of GAs is that the number of free parameters does not change the complexity of the algorithm. They are very efficient when a lot of free parameters are involved and for optimizations where the computing time is a key factor. As existing GAs failed to converge properly for different tested CET problems, a new one is developed, that allows to optimize two objective functions in the same time. It is thus a multiobjective genetic algorithm (MOGA) and has been successfully applied to the design of different CET systems. Finally, in order to validate the models and optimization methods proposed along the thesis, several prototypes are built, measured and tested. Notably, a CET table that allows to supply simultaneously different peripherals is fabricated. By analyzing in real time the current amplitude in the primary coils, an efficient sensorless detection of the peripherals is implemented. Digital control techniques have enabled the autonomous management of the detection and the local activation of the table. These results contribute to the future development of robust and efficient CET tables

    Analysis and Design Methodology For Pcb and Integrated Circuit Pulse Transformer

    Get PDF
    This thesis work aims to establish a design procedure for the Coreless pulse transformers based on the design equations determined from the Low and high frequency models for the transformer after making suitable assumptions. These models are used to develop the pulse waveform structure and hence determine the effect of various circuit parameters on the performance of the transformer. The leakage inductance and the parasitic capacitance are major factors affecting the performance of the transformer. Based on the developed equations the appropriate values for the inductance for the given of rise time are determined .With these values as guidelines the PCB /IC transformer has been designed and simulated in the high frequency electromagnetic software. Based on the simplified models and the simulation data the PCB transformer has been fabricated and measured to validate the design methodology.School of Electrical & Computer Engineerin

    Current Sensing for Automotive Electronics -- A Survey

    Get PDF
    Current sensing is widely used in power electronic applications such as dc-dc power converters and adjustable-speed motor drives. Such power converters are the basic building blocks of drivetrains in electric, hybrid, and plug-in hybrid electric vehicles. The performance and control of such vehicles depend on the accuracy, bandwidth, and efficiency of its sensors. Various current-sensing techniques based on different physical effects such as Faraday\u27s induction law, Ohm\u27s law, Lorentz force law, the magnetoresistance effect, and the magnetic saturation effect are described in this paper. Each technique is reviewed and examined. The current measurement methods are compared and analyzed based on their losslessness, simplicity, and ease of implementation
    • …
    corecore