5,305 research outputs found

    Application of wavelet analysis in tool wear evaluation using image processing method

    Get PDF
    Tool wear plays a significant role for proper planning and control of machining parameters to maintain the product quality. However, existing tool wear monitoring methods using sensor signals still have limitations. Since the cutting tool operates directly on the work-piece during machining process, the machined surface provides valuable information about the cutting tool condition. Therefore, the objective of present study is to evaluate the tool wear based on the workpiece profile signature by using wavelet analysis. The effect of wavelet families, scale of wavelet and statistical features of the continuous wavelet coefficient on the tool wear is studied. The surface profile of workpiece was captured using a DSLR camera. Invariant moment method was applied to extract the surface profile up to sub-pixel accuracy. The extracted surface profile was analyzed by using continuous wavelet transform (CWT) written in MATLAB. The re-sults showed that average, RMS and peak to valley of CWT coefficients at all scale increased with tool wear. Peak to valley at higher scale is more sensitive to tool wear. Haar was found to be more effective and significant to correlate with tool wear with highest R2 which is 0.9301

    Pavement testing by integrated geophysical methods: Feasibility, resolution and diagnostic potential

    Get PDF
    This work is focused on the assessment of the diagnostic potential of several geophysical methods when applied to the investigation of a rigid airport pavement. The potential and limit of each technique are evaluated as well as the added value deriving from their integration. Firstly, we reconstruct a high-resolution image of the pavement by a large electromagnetic and georadar screening. An advanced processing of georadar data, implemented through the picking of the arrival times of reflections for each profile, provides a quantitative estimation of the deviation between the design and the as-built thickness of layers. Additionally, electrical tomography has been applied to unequivocally identify the anomalous zones, where higher values of resistivity would be associated to porous zones that are prone to degradation and failure. The seismic tomographic survey had the additional purpose to recover the mechanical properties of the pavement in terms of both P- and S-waves and consequently of elastic constants (Poisson's ratio), whose values were consistent with those recovered in literature. The anomalies detected by each technique are consistent in their indications and they can be correlated to failure phenomena occurring at layer interfaces within the pavement structure or to unexpected variations of the layer thicknesses. The cost-effective geophysical campaign has validated the four-layered system deduced from the original design and has been used to reconstruct a high-resolution map of the pavement in order to discriminate fractures, crack-prone areas or areas where the as-built differs from the original design

    Aeronautical Engineering: A special bibliography, supplement 60

    Get PDF
    This bibliography lists 284 reports, articles, and other documents introduced into the NASA scientific and technical information system in July 1975

    Advanced signal processing tools for ballistic missile defence and space situational awareness

    Get PDF
    The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose.The research presented in this Thesis deals with signal processing algorithms for the classification of sensitive targets for defence applications and with novel solutions for the detection of space objects. These novel tools include classification algorithms for Ballistic Targets (BTs) from both micro-Doppler (mD) and High Resolution Range Profiles (HRRPs) of a target, and a space-borne Passive Bistatic Radar (PBR) designed for exploiting the advantages guaranteed by the Forward Scattering (FS) configuration for the detection and identification of targets orbiting around the Earth.;Nowadays the challenge of the identification of Ballistic Missile (BM) warheads in a cloud of decoys and debris is essential in order to optimize the use of ammunition resources. In this Thesis, two different and efficient robust frameworks are presented. Both the frameworks exploit in different fashions the effect in the radar return of micro-motions exhibited by the target during its flight.;The first algorithm analyses the radar echo from the target in the time-frequency domain, with the aim to extract the mD information. Specifically, the Cadence Velocity Diagram (CVD) from the received signal is evaluated as mD profile of the target, where the mD components composing the radar echo and their repetition rates are shown.;Different feature extraction approaches are proposed based on the estimation of statistical indices from the 1-Dimensional (1D) Averaged CVD (ACVD), on the evaluation of pseudo-Zerike (pZ) and Krawtchouk (Kr) image moments and on the use of 2-Dimensional (2D) Gabor filter, considering the CVD as 2D image. The reliability of the proposed feature extraction approaches is tested on both simulated and real data, demonstrating the adaptivity of the framework to different radar scenarios and to different amount of available resources.;The real data are realized in laboratory, conducting an experiment for simulating the mD signature of a BT by using scaled replicas of the targets, a robotic manipulator for the micro-motions simulation and a Continuous Waveform (CW) radar for the radar measurements.;The second algorithm is based on the computation of the Inverse Radon Transform (IRT) of the target signature, represented by a HRRP frame acquired within an entire period of the main rotating motion of the target, which are precession for warheads and tumbling for decoys. Following, pZ moments of the resulting transformation are evaluated as final feature vector for the classifier. The features guarantee robustness against the target dimensions and the initial phase and the angular velocity of its motion.;The classification results on simulated data are shown for different polarization of the ElectroMagnetic (EM) radar waveform and for various operational conditions, confirming the the validity of the algorithm.The knowledge of space debris population is of fundamental importance for the safety of both the existing and new space missions. In this Thesis, a low budget solution to detect and possibly track space debris and satellites in Low Earth Orbit (LEO) is proposed.;The concept consists in a space-borne PBR installed on a CubeSaT flying at low altitude and detecting the occultations of radio signals coming from existing satellites flying at higher altitudes. The feasibility of such a PBR system is conducted, with key performance such as metrics the minimumsize of detectable objects, taking into account visibility and frequency constraints on existing radio sources, the receiver size and the compatibility with current CubeSaT's technology.;Different illuminator types and receiver altitudes are considered under the assumption that all illuminators and receivers are on circular orbits. Finally, the designed system can represent a possible solution to the the demand for Ballistic Missile Defence (BMD) systems able to provide early warning and classification and its potential has been assessed also for this purpose

    Aeronautical Engineering: A special bibliography with indexes, supplement 54

    Get PDF
    This bibliography lists 316 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1975

    Waterborne GPR survey for estimating bottom-sediment variability: A survey on the Po River, Turin, Italy

    Get PDF
    We conducted an integrated geophysical survey on a stretch of the river Po in order to check the GPR ability to discriminate the variability of riverbed sediments through an analysis of the bottom reflection amplitudes. We conducted continuous profiles with a 200-MHzGPR system and a handheld broadband EM sensor.Aconductivity meter and a TDR provided punctual measurements of water conductivity, permittivity, and temperature. The processing and interpretation of the GEM-2 and GPR data were enhanced by reciprocal results and by integration with the punctual measurements of the EM properties of the water. We used a processing flow that improved the radargram images and preserved the amplitude ratios among the different profiles and the frequency content at the bottom reflection signal.We derived the water attenuation coefficient both from the punctual measurements using the Maxwell formulas and from the interpretation of the GPR data, finding an optimal matching between the two values. The GPR measurements provided maps of the bathymetry and of the bottom reflection amplitude. The high reflectivity of the riverbed, derived from the GPR interpretation, agreed with the results of the direct sampling campaign that followed the geophysical survey. The variability of the bottom-reflection-amplitudes map, which was not confirmed by the direct sampling, could also have been caused by scattering phenomena due to the riverbed clasts which are dimensionally comparable to the wavelength of the radar pulse

    Comparison of Computational Electromagnetic Codes for Prediction of Low-Frequency Radar Cross Section

    Get PDF
    Radar cross section (RCS) prediction of full-scale aircraft is of interest to military planners for a variety of applications. Several computational electromagnetic codes for RCS prediction are available with differing features and capabilities. The goal of this research is to compare the capabilities of three computational electromagnetic codes for use in production of RCS signature assessments at low frequencies in terms of performance, accuracy, and features: Fast Illinois Solver Code (FISC), Code for Analysis of Radiators on Lossy Surfaces (CARLOS-3D), and Science Applications International Corporation Full-wave solver (SAF). The comparison is accomplished through analysis of predicted and measured RCS of several canonical and simple objects and a complex target comprised of these constituent objects. In addition to RCS accuracy, memory requirements and computation time are key considerations for this code comparison. Verification of code performance in memory and processing time based on varying levels of unknowns is performed. A 1/36 scale body-of-revolution missile model is the complex model constructed for measurement and prediction. The model corresponds to an 18-meter full-scale target and includes a cavity allowing mode propagation at frequencies of interest. The complex model is simulated at 400 and 500 MHZ corresponding to a 24 and 30 lambda target length, respectively. RCS of each constituent part of the model is also analyzed to establish a level of confidence in solution accuracy. Solution convergence is shown using increasing discretization levels. A comparison is also conducted between measured and predicted results for two PEC objects coated with magnetic radar absorbent material (MRAM). The RCS for a 12″×12″ MRAM-coated PEC flat plate and a 9″×9″ MRAM-coated PEC right circular cone are measured in the Air Force Research Laboratory’s compact RCS/antenna measurement range and then compared to results from FISC using its impedance boundary condition (IBC) feature. A physical optics method for predicting RCS of a material-coated PEC plate is also developed as a third data. The IBC formulation is generalized for polarization and angle-dependent impedances to investigate prediction improvement. Results of each part of the comparison are presented as well as the methodology used to evaluate the codes

    Mariner Mars 1971 optical navigation demonstration

    Get PDF
    The feasibility of using a combination of spacecraft-based optical data and earth-based Doppler data to perform near-real-time approach navigation was demonstrated by the Mariner Mars 71 Project. The important findings, conclusions, and recommendations are documented. A summary along with publications and papers giving additional details on the objectives of the demonstration are provided. Instrument calibration and performance as well as navigation and science results are reported

    Scorpion: Close Air Support (CAS) aircraft

    Get PDF
    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design
    corecore