16,220 research outputs found

    Self-Organizing Piecewise Aggregate Approximation algortihm for intelligent detection and diagnosis of heart conditions

    Get PDF
    Electrocardiogram (ECG) signal classification is a recognized method for automated detection and diagnosis of heart abnormalities. This is typically achieved through dimensionality reduction techniques and feature extraction followed by signal classification using various machine learning algorithms. Although some algorithms can yield accurate results, they can be computationally demanding meaning that mobile analysis is difficult. Furthermore, discrete changes in signal characteristics, often exhibited as an early indication of the onset of heart abnormalities, can be lost in the dimensionality reduction process leading to misclassification of signal types. This paper presents a new dimensionality reduction algorithm, based on Piecewise Aggregate Approximation (PAA), called Self-Organizing Piecewise Aggregate Approximation (SOPAA) that is able to determine optimum PAA parameters based on signal characteristics within individual ECG data sets. This leads to more accurate and compact representations of ECG signals, improved classification of signal types and improved abnormality detection and diagnosis. In this work, ECG data from 99 patients exhibiting 3 different heart conditions are analyzed. Signals are discretized using both PAA and SOPAA and classified using the k-means clustering algorithm. It is shown that the SOPAA algorithm outperforms standard PAA by correctly classifying 19.7% more patients

    ADAPTIVE MODELS-BASED CARDIAC SIGNALS ANALYSIS AND FEATURE EXTRACTION

    Get PDF
    Signal modeling and feature extraction are among the most crucial and important steps for stochastic signal processing. In this thesis, a general framework that employs adaptive model-based recursive Bayesian state estimation for signal processing and feature extraction is described. As a case study, the proposed framework is studied for the problem of cardiac signal analysis. The main objective is to improve the signal processing aspects of cardiac signals by developing new techniques based on adaptive modelling of electrocardiogram (ECG) wave-forms. Specially several novel and improved approaches to model-based ECG decomposition, waveform characterization and feature extraction are proposed and studied in detail. In the concept of ECG decomposition and wave-forms characterization, the main idea is to extend and improve the signal dynamical models (i.e. reducing the non-linearity of the state model with respect to previous solutions) while combining with Kalman smoother to increase the accuracy of the model in order to split the ECG signal into its waveform components, as it is proved that Kalman filter/smoother is an optimal estimator in minimum mean square error (MMSE) for linear dynamical systems. The framework is used for many real applications, such as: ECG components extraction, ST segment analysis (estimation of a possible marker of ventricular repolarization known as T/QRS ratio) and T-wave Alternans (TWA) detection, and its extension to many other applications is straightforward. Based on the proposed framework, a novel model to characterization of Atrial Fibrillation (AF) is presented which is more effective when compared with other methods proposed with the same aims. In this model, ventricular activity (VA) is represented by a sum of Gaussian kernels, while a sinusoidal model is employed for atrial activity (AA). This new model is able to track AA, VA and fibrillatory frequency simultaneously against other methods which try to analyze the atrial fibrillatory waves (f-waves) after VA cancellation. Furthermore we study a new ECG processing method for assessing the spatial dispersion of ventricular repolarization (SHVR) using V-index and a novel algorithm to estimate the index is presented, leading to more accurate estimates. The proposed algorithm was used to study the diagnostic and prognostic value of the V-index in patients with symptoms suggestive of Acute Myocardial Infraction (AMI)

    Patient Specific Congestive Heart Failure Detection From Raw ECG signal

    Full text link
    In this study; in order to diagnose congestive heart failure (CHF) patients, non-linear second-order difference plot (SODP) obtained from raw 256 Hz sampled frequency and windowed record with different time of ECG records are used. All of the data rows are labelled with their belongings to classify much more realistically. SODPs are divided into different radius of quadrant regions and numbers of the points fall in the quadrants are computed in order to extract feature vectors. Fisher's linear discriminant, Naive Bayes, Radial basis function, and artificial neural network are used as classifier. The results are considered in two step validation methods as general k-fold cross-validation and patient based cross-validation. As a result, it is shown that using neural network classifier with features obtained from SODP, the constructed system could distinguish normal and CHF patients with 100% accuracy rate. KeywordsComment: Congestive heart failure, ECG, Second-Order Difference Plot, classification, patient based cross-validatio

    Patient-adapted and inter-patient ecg classification using neural network and gradient boosting

    Get PDF
    Heart disease diagnosis is an important non-invasive technique. Therefore, there exists an effort to increase the accuracy of arrhythmia classification based on ECG signals. In this work, we present a novel approach of heart arrhythmia detection. The model consists of two parts. The first part extracts important features from raw ECG signal using Auto-Encoder Neural Network. Extracted features obtained by Auto-Encoder represent an input for the second part of the model, the Gradient Boosting and Feedforward Neural Network classifiers. For comparison purposes, we evaluated our approach by using MIT-BIH ECG database and also following recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for ECG class labeling. We divided our experiment into two scenarios. The first scenario represents the classification task for the patient-adapted paradigm and the second one was dedicated to the inter-patient paradigm. We compared the measured results to the state-of-the-art methods and it shows that our method outperforms the state-of-the art methods in the Ventricular Ectopic (VEB) class for both paradigms and Supraventricular Ectopic (SVEB) class in the inter-patient paradigm.Web of Science28325424

    Transparent authentication: Utilising heart rate for user authentication

    Get PDF
    There has been exponential growth in the use of wearable technologies in the last decade with smart watches having a large share of the market. Smart watches were primarily used for health and fitness purposes but recent years have seen a rise in their deployment in other areas. Recent smart watches are fitted with sensors with enhanced functionality and capabilities. For example, some function as standalone device with the ability to create activity logs and transmit data to a secondary device. The capability has contributed to their increased usage in recent years with researchers focusing on their potential. This paper explores the ability to extract physiological data from smart watch technology to achieve user authentication. The approach is suitable not only because of the capacity for data capture but also easy connectivity with other devices - principally the Smartphone. For the purpose of this study, heart rate data is captured and extracted from 30 subjects continually over an hour. While security is the ultimate goal, usability should also be key consideration. Most bioelectrical signals like heart rate are non-stationary time-dependent signals therefore Discrete Wavelet Transform (DWT) is employed. DWT decomposes the bioelectrical signal into n level sub-bands of detail coefficients and approximation coefficients. Biorthogonal Wavelet (bior 4.4) is applied to extract features from the four levels of detail coefficents. Ten statistical features are extracted from each level of the coffecient sub-band. Classification of each sub-band levels are done using a Feedforward neural Network (FF-NN). The 1 st , 2 nd , 3 rd and 4 th levels had an Equal Error Rate (EER) of 17.20%, 18.17%, 20.93% and 21.83% respectively. To improve the EER, fusion of the four level sub-band is applied at the feature level. The proposed fusion showed an improved result over the initial result with an EER of 11.25% As a one-off authentication decision, an 11% EER is not ideal, its use on a continuous basis makes this more than feasible in practice
    • …
    corecore