7,131 research outputs found

    Ideal Tightly Couple (t,m,n) Secret Sharing

    Full text link
    As a fundamental cryptographic tool, (t,n)-threshold secret sharing ((t,n)-SS) divides a secret among n shareholders and requires at least t, (t<=n), of them to reconstruct the secret. Ideal (t,n)-SSs are most desirable in security and efficiency among basic (t,n)-SSs. However, an adversary, even without any valid share, may mount Illegal Participant (IP) attack or t/2-Private Channel Cracking (t/2-PCC) attack to obtain the secret in most (t,n)-SSs.To secure ideal (t,n)-SSs against the 2 attacks, 1) the paper introduces the notion of Ideal Tightly cOupled (t,m,n) Secret Sharing (or (t,m,n)-ITOSS ) to thwart IP attack without Verifiable SS; (t,m,n)-ITOSS binds all m, (m>=t), participants into a tightly coupled group and requires all participants to be legal shareholders before recovering the secret. 2) As an example, the paper presents a polynomial-based (t,m,n)-ITOSS scheme, in which the proposed k-round Random Number Selection (RNS) guarantees that adversaries have to crack at least symmetrical private channels among participants before obtaining the secret. Therefore, k-round RNS enhances the robustness of (t,m,n)-ITOSS against t/2-PCC attack to the utmost. 3) The paper finally presents a generalized method of converting an ideal (t,n)-SS into a (t,m,n)-ITOSS, which helps an ideal (t,n)-SS substantially improve the robustness against the above 2 attacks

    Security in Locally Repairable Storage

    Full text link
    In this paper we extend the notion of {\em locally repairable} codes to {\em secret sharing} schemes. The main problem that we consider is to find optimal ways to distribute shares of a secret among a set of storage-nodes (participants) such that the content of each node (share) can be recovered by using contents of only few other nodes, and at the same time the secret can be reconstructed by only some allowable subsets of nodes. As a special case, an eavesdropper observing some set of specific nodes (such as less than certain number of nodes) does not get any information. In other words, we propose to study a locally repairable distributed storage system that is secure against a {\em passive eavesdropper} that can observe some subsets of nodes. We provide a number of results related to such systems including upper-bounds and achievability results on the number of bits that can be securely stored with these constraints.Comment: This paper has been accepted for publication in IEEE Transactions of Information Theor

    Secret-Sharing for NP

    Get PDF
    A computational secret-sharing scheme is a method that enables a dealer, that has a secret, to distribute this secret among a set of parties such that a "qualified" subset of parties can efficiently reconstruct the secret while any "unqualified" subset of parties cannot efficiently learn anything about the secret. The collection of "qualified" subsets is defined by a Boolean function. It has been a major open problem to understand which (monotone) functions can be realized by a computational secret-sharing schemes. Yao suggested a method for secret-sharing for any function that has a polynomial-size monotone circuit (a class which is strictly smaller than the class of monotone functions in P). Around 1990 Rudich raised the possibility of obtaining secret-sharing for all monotone functions in NP: In order to reconstruct the secret a set of parties must be "qualified" and provide a witness attesting to this fact. Recently, Garg et al. (STOC 2013) put forward the concept of witness encryption, where the goal is to encrypt a message relative to a statement "x in L" for a language L in NP such that anyone holding a witness to the statement can decrypt the message, however, if x is not in L, then it is computationally hard to decrypt. Garg et al. showed how to construct several cryptographic primitives from witness encryption and gave a candidate construction. One can show that computational secret-sharing implies witness encryption for the same language. Our main result is the converse: we give a construction of a computational secret-sharing scheme for any monotone function in NP assuming witness encryption for NP and one-way functions. As a consequence we get a completeness theorem for secret-sharing: computational secret-sharing scheme for any single monotone NP-complete function implies a computational secret-sharing scheme for every monotone function in NP

    Society-oriented cryptographic techniques for information protection

    Get PDF
    Groups play an important role in our modern world. They are more reliable and more trustworthy than individuals. This is the reason why, in an organisation, crucial decisions are left to a group of people rather than to an individual. Cryptography supports group activity by offering a wide range of cryptographic operations which can only be successfully executed if a well-defined group of people agrees to co-operate. This thesis looks at two fundamental cryptographic tools that are useful for the management of secret information. The first part looks in detail at secret sharing schemes. The second part focuses on society-oriented cryptographic systems, which are the application of secret sharing schemes in cryptography. The outline of thesis is as follows

    Lower Bounds for Secret-Sharing Schemes for k-Hypergraphs

    Get PDF
    • …
    corecore