3,969 research outputs found

    Generation of curved high-order meshes with optimal quality and geometric accuracy

    Get PDF
    We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy. The proposed technique combines a distortion measure and a geometric L2-disparity measure into a single objective function. While the element distortion term takes into account the mesh quality, the L2-disparity term takes into account the geometric error introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way, further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle real-case geometries that contain gaps between adjacent entities.Peer ReviewedPostprint (published version

    Generation of Curved High-order Meshes with Optimal Quality and Geometric Accuracy

    Get PDF
    We present a novel methodology to generate curved high-order meshes featuring optimal mesh quality and geometric accuracy. The proposed technique combines a distortion measure and a geometric Full-size image (<1 K)-disparity measure into a single objective function. While the element distortion term takes into account the mesh quality, the Full-size image (<1 K)-disparity term takes into account the geometric error introduced by the mesh approximation to the target geometry. The proposed technique has several advantages. First, we are not restricted to interpolative meshes and therefore, the resulting mesh approximates the target domain in a non-interpolative way, further increasing the geometric accuracy. Second, we are able to generate a series of meshes that converge to the actual geometry with expected rate while obtaining high-quality elements. Third, we show that the proposed technique is robust enough to handle real-case geometries that contain gaps between adjacent entities.This research was partially supported by the Spanish Ministerio de Economía y Competitividad under grand contract CTM2014-55014-C3-3-R, and by the Government of Catalonia under grand contract 2014-SGR-1471. The work of the last author was supported by the European Commission through the Marie Sklodowska-Curie Actions (HiPerMeGaFlows project).Peer ReviewedPostprint (published version

    Approximation by planar elastic curves

    Get PDF
    We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient-driven optimization is then used to find the approximating elastic curve.Comment: 18 pages, 10 figures. Version2: new section 5 added (conclusions and discussions

    Defining an2-disparity measure to check and improve the geometric accuracy of noninterpolating curved high-order meshes

    Get PDF
    We define an2-disparity measure between curved high-order meshes and parameterized manifolds in terms of an2norm. The main application of the proposed definition is to measure and improve the distance between a curved high-order mesh and a target parameterized curve or surface. The approach allows considering meshes with the nodes on top of the curve or surface (interpolative), or floating freely in the physical space (non-interpolative). To compute the disparity measure, the average of the squared point-wise differences is minimized in terms of the nodal coordinates of an auxiliary parametric high-order mesh. To improve the accuracy of approximating the target manifold with a noninterpolating curved high-order mesh, we minimize the square of the disparity measure expressed both in terms of the nodal coordinates of the physical and parametric curved high-order meshes. The proposed objective functions are continuously differentiable and thus, we are able to use minimization algorithms that require the first or the second derivatives of the objective function. Finally, we present several examples that show that the proposed methodology generates high-order approximations of the target manifold with optimal convergence rates for the geometric accuracy even when non-uniform parameterizations of the manifolds are prescribed. Accordingly, we can generate coarse curved high-order meshes significantly more accurate than finer low-order meshes that feature the same resolution.Peer ReviewedPostprint (author's final draft

    Curved Finite Elements and Curve Approximation

    Get PDF
    The approximation of parameterized curves by segments of parabolas that pass through the endpoints of each curve segment arises naturally in all quadratic isoparametric transformations. While not as popular as cubics in curve design problems, the use of parabolas allows the introduction of a geometric measure of the discrepancy between given and approximating curves. The free parameters of the parabola may be used to optimize the fit, and constraints that prevent overspill and curve degeneracy are introduced. This leads to a constrained optimization problem in two varibles that can be solved quickly and reliably by a simple method that takes advantage of the special structure of the problem. For applications in the field of computer-aided design, the given curves are often cubic polynomials, and the coefficient may be calculated in closed form in terms of polynomial coefficients by using a symbolic machine language so that families of curves can be approximated with no further integration. For general curves, numerical quadrature may be used, as in the implementation where the Romberg quadrature is applied. The coefficient functions C sub 1 (gamma) and C sub 2 (gamma) are expanded as polynomials in gamma, so that for given A(s) and B(s) the integrations need only be done once. The method was used to find optimal constrained parabolic approximation to a wide variety of given curves

    Gauge Invariant Framework for Shape Analysis of Surfaces

    Full text link
    This paper describes a novel framework for computing geodesic paths in shape spaces of spherical surfaces under an elastic Riemannian metric. The novelty lies in defining this Riemannian metric directly on the quotient (shape) space, rather than inheriting it from pre-shape space, and using it to formulate a path energy that measures only the normal components of velocities along the path. In other words, this paper defines and solves for geodesics directly on the shape space and avoids complications resulting from the quotient operation. This comprehensive framework is invariant to arbitrary parameterizations of surfaces along paths, a phenomenon termed as gauge invariance. Additionally, this paper makes a link between different elastic metrics used in the computer science literature on one hand, and the mathematical literature on the other hand, and provides a geometrical interpretation of the terms involved. Examples using real and simulated 3D objects are provided to help illustrate the main ideas.Comment: 15 pages, 11 Figures, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence in a better resolutio

    Stochastic filtering via L2 projection on mixture manifolds with computer algorithms and numerical examples

    Get PDF
    We examine some differential geometric approaches to finding approximate solutions to the continuous time nonlinear filtering problem. Our primary focus is a new projection method for the optimal filter infinite dimensional Stochastic Partial Differential Equation (SPDE), based on the direct L2 metric and on a family of normal mixtures. We compare this method to earlier projection methods based on the Hellinger distance/Fisher metric and exponential families, and we compare the L2 mixture projection filter with a particle method with the same number of parameters, using the Levy metric. We prove that for a simple choice of the mixture manifold the L2 mixture projection filter coincides with a Galerkin method, whereas for more general mixture manifolds the equivalence does not hold and the L2 mixture filter is more general. We study particular systems that may illustrate the advantages of this new filter over other algorithms when comparing outputs with the optimal filter. We finally consider a specific software design that is suited for a numerically efficient implementation of this filter and provide numerical examples.Comment: Updated and expanded version published in the Journal reference below. Preprint updates: January 2016 (v3) added projection of Zakai Equation and difference with projection of Kushner-Stratonovich (section 4.1). August 2014 (v2) added Galerkin equivalence proof (Section 5) to the March 2013 (v1) versio

    How to Walk Your Dog in the Mountains with No Magic Leash

    Full text link
    We describe a O(logn)O(\log n )-approximation algorithm for computing the homotopic \Frechet distance between two polygonal curves that lie on the boundary of a triangulated topological disk. Prior to this work, algorithms were known only for curves on the Euclidean plane with polygonal obstacles. A key technical ingredient in our analysis is a O(logn)O(\log n)-approximation algorithm for computing the minimum height of a homotopy between two curves. No algorithms were previously known for approximating this parameter. Surprisingly, it is not even known if computing either the homotopic \Frechet distance, or the minimum height of a homotopy, is in NP
    corecore