26,108 research outputs found

    P-class phasor measurement unit algorithms using adaptive filtering to enhance accuracy at off-nominal frequencies

    Get PDF
    While the present standard C.37.118-2005 for Phasor Measurement Units (PMUs) requires testing only at steady-state conditions, proposed new versions of the standard require much more stringent testing, involving frequency ramps and off-nominal frequency testing. This paper presents two new algorithms for “P Class” PMUs which enable performance at off-nominal frequencies to be retained at levels comparable to the performance for nominal frequency input. The performances of the algorithms are compared to the “Basic” Synchrophasor Estimation Model described in the new standard. The proposed algorithms show a much better performance than the “Basic” algorithm, particularly in the measurements of frequency and rate-of-change-of-frequency at off-nominal frequencies and in the presence of unbalance and harmonics

    A Communication Monitor for Wireless Sensor Networks Based on Software Defined Radio

    Get PDF
    Link quality estimation of reliability-crucial wireless sensor networks (WSNs) is often limited by the observability and testability of single-chip radio transceivers. The estimation is often based on collection of packer-level statistics, including packet reception rate, or vendor-specific registers, such as CC2420's Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI). The speed or accuracy of such metrics limits the performance of reliability mechanisms built in wireless sensor networks. To improve link quality estimation in WSNs, we designed a powerful wireless communication monitor based on Software Defined Radio (SDR). We studied the relations between three implemented link quality metrics and packet reception rate under different channel conditions. Based on a comparison of the metrics' relative advantages, we proposed using a combination of them for fast and accurate estimation of a sensor network link

    Transient Propagation and Scattering of Quasi-Rayleigh Waves in Plates: Quantitative comparison between Pulsed TV-Holography Measurements and FC(Gram) elastodynamic simulations

    Get PDF
    We study the scattering of transient, high-frequency, narrow-band quasi-Rayleigh elastic waves by through-thickness holes in aluminum plates, in the framework of ultrasonic nondestructive testing (NDT) based on full-field optical detection. Sequences of the instantaneous two-dimensional (2-D) out-of-plane displacement scattering maps are measured with a self-developed PTVH system. The corresponding simulated sequences are obtained by means of an FC(Gram) elastodynamic solver introduced recently, which implements a full three-dimensional (3D) vector formulation of the direct linear-elasticity scattering problem. A detailed quantitative comparison between these experimental and numerical sequences, which is presented here for the first time, shows very good agreement both in the amplitude and the phase of the acoustic field in the forward, lateral and backscattering areas. It is thus suggested that the combination of the PTVH system and the FC(Gram) elastodynamic solver provides an effective ultrasonic inspection tool for plate-like structures, with a significant potential for ultrasonic NDT applications.Comment: 46 pages, 16 figures, corresponding author Jos\'e Carlos L\'opez-V\'azquez, [email protected]. Changes: 1st, 4th, 5th paragraphs (intro), 3rd, 4th paragraphs (sec. 4); [59-60] cited only in appendixes; old ref. [52] removed; misprints corrected in the uncertainty of c_L (subsec. 3.1), citation to fig. 10 (sec. 4), size of images (caption fig.15); reference to Lam\'e constants removed in subsec. 3.

    Distributed quantum sensing in a continuous variable entangled network

    Full text link
    Networking plays a ubiquitous role in quantum technology. It is an integral part of quantum communication and has significant potential for upscaling quantum computer technologies that are otherwise not scalable. Recently, it was realized that sensing of multiple spatially distributed parameters may also benefit from an entangled quantum network. Here we experimentally demonstrate how sensing of an averaged phase shift among four distributed nodes benefits from an entangled quantum network. Using a four-mode entangled continuous variable (CV) state, we demonstrate deterministic quantum phase sensing with a precision beyond what is attainable with separable probes. The techniques behind this result can have direct applications in a number of primitives ranging from biological imaging to quantum networks of atomic clocks
    • 

    corecore