5,295 research outputs found

    A Reinforcement Learning-assisted Genetic Programming Algorithm for Team Formation Problem Considering Person-Job Matching

    Full text link
    An efficient team is essential for the company to successfully complete new projects. To solve the team formation problem considering person-job matching (TFP-PJM), a 0-1 integer programming model is constructed, which considers both person-job matching and team members' willingness to communicate on team efficiency, with the person-job matching score calculated using intuitionistic fuzzy numbers. Then, a reinforcement learning-assisted genetic programming algorithm (RL-GP) is proposed to enhance the quality of solutions. The RL-GP adopts the ensemble population strategies. Before the population evolution at each generation, the agent selects one from four population search modes according to the information obtained, thus realizing a sound balance of exploration and exploitation. In addition, surrogate models are used in the algorithm to evaluate the formation plans generated by individuals, which speeds up the algorithm learning process. Afterward, a series of comparison experiments are conducted to verify the overall performance of RL-GP and the effectiveness of the improved strategies within the algorithm. The hyper-heuristic rules obtained through efficient learning can be utilized as decision-making aids when forming project teams. This study reveals the advantages of reinforcement learning methods, ensemble strategies, and the surrogate model applied to the GP framework. The diversity and intelligent selection of search patterns along with fast adaptation evaluation, are distinct features that enable RL-GP to be deployed in real-world enterprise environments.Comment: 16 page

    Explaining Aviation Safety Incidents Using Deep Temporal Multiple Instance Learning

    Full text link
    Although aviation accidents are rare, safety incidents occur more frequently and require a careful analysis to detect and mitigate risks in a timely manner. Analyzing safety incidents using operational data and producing event-based explanations is invaluable to airline companies as well as to governing organizations such as the Federal Aviation Administration (FAA) in the United States. However, this task is challenging because of the complexity involved in mining multi-dimensional heterogeneous time series data, the lack of time-step-wise annotation of events in a flight, and the lack of scalable tools to perform analysis over a large number of events. In this work, we propose a precursor mining algorithm that identifies events in the multidimensional time series that are correlated with the safety incident. Precursors are valuable to systems health and safety monitoring and in explaining and forecasting safety incidents. Current methods suffer from poor scalability to high dimensional time series data and are inefficient in capturing temporal behavior. We propose an approach by combining multiple-instance learning (MIL) and deep recurrent neural networks (DRNN) to take advantage of MIL's ability to learn using weakly supervised data and DRNN's ability to model temporal behavior. We describe the algorithm, the data, the intuition behind taking a MIL approach, and a comparative analysis of the proposed algorithm with baseline models. We also discuss the application to a real-world aviation safety problem using data from a commercial airline company and discuss the model's abilities and shortcomings, with some final remarks about possible deployment directions

    Extracting personal information from conversations

    Get PDF
    Personal knowledge is a versatile resource that is valuable for a wide range of downstream applications. Background facts about users can allow chatbot assistants to produce more topical and empathic replies. In the context of recommendation and retrieval models, personal facts can be used to customize the ranking results for individual users. A Personal Knowledge Base, populated with personal facts, such as demographic information, interests and interpersonal relationships, is a unique endpoint for storing and querying personal knowledge. Such knowledge bases are easily interpretable and can provide users with full control over their own personal knowledge, including revising stored facts and managing access by downstream services for personalization purposes. To alleviate users from extensive manual effort to build such personal knowledge base, we can leverage automated extraction methods applied to the textual content of the users, such as dialogue transcripts or social media posts. Mainstream extraction methods specialize on well-structured data, such as biographical texts or encyclopedic articles, which are rare for most people. In turn, conversational data is abundant but challenging to process and requires specialized methods for extraction of personal facts. In this dissertation we address the acquisition of personal knowledge from conversational data. We propose several novel deep learning models for inferring speakers’ personal attributes: ‱ Demographic attributes, age, gender, profession and family status, are inferred by HAMs - hierarchical neural classifiers with attention mechanism. Trained HAMs can be transferred between different types of conversational data and provide interpretable predictions. ‱ Long-tailed personal attributes, hobby and profession, are predicted with CHARM - a zero-shot learning model, overcoming the lack of labeled training samples for rare attribute values. By linking conversational utterances to external sources, CHARM is able to predict attribute values which it never saw during training. ‱ Interpersonal relationships are inferred with PRIDE - a hierarchical transformer-based model. To accurately predict fine-grained relationships, PRIDE leverages personal traits of the speakers and the style of conversational utterances. Experiments with various conversational texts, including Reddit discussions and movie scripts, demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.Personengebundene Fakten sind eine vielseitig nutzbare Quelle fĂŒr die verschiedensten Anwendungen. Hintergrundfakten ĂŒber Nutzer können es Chatbot-Assistenten ermöglichen, relevantere und persönlichere Antworten zu geben. Im Kontext von Empfehlungs- und Retrievalmodellen können personengebundene Fakten dazu verwendet werden, die Ranking-Ergebnisse fĂŒr Nutzer individuell anzupassen. Eine Personengebundene Wissensdatenbank, gefĂŒllt mit persönlichen Daten wie demografischen Angaben, Interessen und Beziehungen, kann eine universelle Schnittstelle fĂŒr die Speicherung und Abfrage solcher Fakten sein. Wissensdatenbanken sind leicht zu interpretieren und bieten dem Nutzer die vollstĂ€ndige Kontrolle ĂŒber seine personenbezogenen Fakten, einschließlich der Überarbeitung und der Verwaltung des Zugriffs durch nachgelagerte Dienste, etwa fĂŒr Personalisierungszwecke. Um den Nutzern den aufwĂ€ndigen manuellen Aufbau einer solchen persönlichen Wissensdatenbank zu ersparen, können automatisierte Extraktionsmethoden auf den textuellen Inhalten der Nutzer – wie z.B. Konversationen oder BeitrĂ€ge in sozialen Medien – angewendet werden. Die ĂŒblichen Extraktionsmethoden sind auf strukturierte Daten wie biografische Texte oder enzyklopĂ€dische Artikel spezialisiert, die bei den meisten Menschen keine Rolle spielen. In dieser Dissertation beschĂ€ftigen wir uns mit der Gewinnung von persönlichem Wissen aus Dialogdaten und schlagen mehrere neuartige Deep-Learning-Modelle zur Ableitung persönlicher Attribute von Sprechern vor: ‱ Demographische Attribute wie Alter, Geschlecht, Beruf und Familienstand werden durch HAMs - Hierarchische Neuronale Klassifikatoren mit Attention-Mechanismus - abgeleitet. Trainierte HAMs können zwischen verschiedenen Arten von GesprĂ€chsdaten ĂŒbertragen werden und liefern interpretierbare Vorhersagen ‱ Vielseitige persönliche Attribute wie Hobbys oder Beruf werden mit CHARM ermittelt - einem Zero-Shot-Lernmodell, das den Mangel an markierten Trainingsbeispielen fĂŒr seltene Attributwerte ĂŒberwindet. Durch die VerknĂŒpfung von GesprĂ€chsĂ€ußerungen mit externen Quellen ist CHARM in der Lage, Attributwerte zu ermitteln, die es beim Training nie gesehen hat ‱ Zwischenmenschliche Beziehungen werden mit PRIDE, einem hierarchischen transformerbasierten Modell, abgeleitet. Um prĂ€zise Beziehungen vorhersagen zu können, nutzt PRIDE persönliche Eigenschaften der Sprecher und den Stil von KonversationsĂ€ußerungen Experimente mit verschiedenen Konversationstexten, inklusive Reddit-Diskussionen und Filmskripten, demonstrieren die Praxistauglichkeit unserer Methoden und ihre hervorragende Leistung im Vergleich zum aktuellen Stand der Technik

    A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings

    Get PDF
    Memetic algorithms are a class of well-studied metaheuristics which combine evolutionary algorithms and local search techniques. A meme represents contagious piece of information in an adaptive information sharing system. The canonical memetic algorithm uses a fixed meme, denoting a hill climbing operator, to improve each solution in a population during the evolutionary search process. Given global parameters and multiple parametrised operators, adaptation often becomes a crucial constituent in the design of MAs. In this study, a self-adaptive self-configuring steady-state multimeme memetic algorithm (SSMMA) variant is proposed. Along with the individuals (solutions), SSMMA co-evolves memes, encoding the utility score for each algorithmic component choice and relevant parameter setting option. An individual uses tournament selection to decide which operator and parameter setting to employ at a given step. The performance of the proposed algorithm is evaluated on six combinatorial optimisation problems from a cross-domain heuristic search benchmark. The results indicate the success of SSMMA when compared to the static Mas as well as widely used self-adaptive Multimeme Memetic Algorithm from the scientific literature

    Recent Developments in Recommender Systems: A Survey

    Full text link
    In this technical survey, we comprehensively summarize the latest advancements in the field of recommender systems. The objective of this study is to provide an overview of the current state-of-the-art in the field and highlight the latest trends in the development of recommender systems. The study starts with a comprehensive summary of the main taxonomy of recommender systems, including personalized and group recommender systems, and then delves into the category of knowledge-based recommender systems. In addition, the survey analyzes the robustness, data bias, and fairness issues in recommender systems, summarizing the evaluation metrics used to assess the performance of these systems. Finally, the study provides insights into the latest trends in the development of recommender systems and highlights the new directions for future research in the field

    A systematic review on MIVES: a sustainability-oriented multi-criteria decision-making method

    Get PDF
    Sustainability has practically become a mandatory concept to be considered in every decision, and multiple decision-making methods have been adapted to take it into account. Among them, sustainability centred methods are also known as sustainability assessments, which provides sustainability indexes to select and prioritize alternatives. One of these most recent presented techniques is MIVES, a multi attribute utility theory multi-criteria decision-making value function-based method initially developed to introduce environmental and social indicators in civil engineering design decisions and later adapted for general evaluation and prioritization of homogenous and heterogeneous alternatives. Over the last decade, it has been widely studied and applied to specific situations, but a MIVES summary is currently lacking. Therefore, in this paper MIVES literature is reviewed with a deep bibliometric analysis carried out to provide on multiple data about MIVES state-of-the-art. Furthermore, a thematic clusters categorisation is done to reveal the usefulness of MIVES as design and decision-making tool, cataloguing the wide applications of MIVES as sustainability index. Finally, a MIVES characteristics discussion is carried out to help researchers deepen their knowledge towards the method and highlight potential future research pathways.The first author acknowledges the Goverment of Spain: Ministry of Education, Culture and Sports [grant number FPU18/01471]. The second and last author wishes to recognize the support from Serra Hunter programme. Finally, this work was supported by Catalan agency AGAUR trough their research groups support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    A Security-by-Design Decision-Making Model for Risk Management in Autonomous Vehicles

    Get PDF
    Autonomous/self-driving vehicles have gained significant attention these days, as one of the intelligent transportation systems. However, those vehicles have risks related to their physical implementation and security against cyber threats. Therefore, this study proposes a new security-by-design model for estimating the uncertainty of autonomous vehicles and measuring cyber risks; thus it assists decision-makers in addressing the risks of the physical design and their attack surfaces. The proposed model is developed using neutrosophic sets that efficiently tackle multi-criteria decision-making (MCDM) problems with extensive conflicting criteria and alternatives. The proposed model integrates MCDM, Analytic Hierarchy Process (AHP), Multi-Attributive Border Approximation Area Comparison (MABAC), and Preference Ranking Organization Method for Enrichment Evaluations II (PROMETHEE II), along with single-valued neutrosophic sets (SVNSs). An illustrative case considering ten risks in self-driving vehicles is used to validate the feasibility of the proposed model. Compared to the state-of-the-art methods, the proposed model is considered consistent and reliable to deal with and represent uncertainty and incomplete risk information using neutrosophic sets

    Psychological team diversity and strategy implementation

    Get PDF
    The overwhelming majority of team or group composition studies are restricted to analyzing the link between team demographics and the content of specific strategic choices. We argue that in order to make progress in this domain it is now time to broaden the approach by focusing on psychological team composition and issues of effective implementation. In addition, we propose a more sophisticated theoretical and methodological approach to the use of specific team composition measures. We conducted an experimental study in order to explore the potential of addressing these major limitations of past research. Specifically, we hypothesize on and analyze the relationship between the psychological composition of management teams (in terms of their members'' control perceptions) and two aspects of effective strategy implementation: meticulous planning and the configuration of consistent action patterns. We find that homogeneous ''internal'' teams adapt their strategy-making behavior to the requirements of the environment, whereas homogeneous ''external'' teams do not. As expected, mixed (i.e., heterogeneous) teams experienced most problems in effectively implementing their strategies. The findings provide support for the potential value of analyzing both psychological composition of decision making teams and strategy implementation issues. Furthermore, it underscores the importance of properly matching theoretical expectations and measurement methodology in multi-level research.management and organization theory ;
    • 

    corecore