497 research outputs found

    Pulmonary Metaphor Design and Anesthesia Simulation Testing

    Get PDF
    Medical decision making is a crucial process to successfully treat a critical medical emergency. During an unexpected medical event, astronauts, like anesthesiologists, must react quickly in a complex environment. Tools, such as the pulmonary metaphor display, were created to aid the medical caregiver\u27s decision making process. The pulmonary metaphor display is designed to help the caregiver collect and integrate pulmonary data to provide a more accurate, quicker diagnosis and treatment. The following outline anesthesiology simulation study will provide the data to prove that the pulmonary metaphor display is beneficial to medical decision making

    The Evaluation of a Pulmonary Graphical Display in the Medical Intensive Care Unit: A Feasibility Study

    Get PDF
    How a new graphical monitor such as the pulmonary display will be integrated and accepted by the users is an important step when introducing new information and technology in the ICU. We developed a pulmonary display that depicts pulmonary information for an intubated, mechanically ventilated patient. This study observed caregivers attending ICU patients in the presence of the pulmonary display. Attendings observed the pulmonary display an average of 3 times per visit whereas nurses glanced at it at least once per visit. The pulmonary display showed distinct patterns demonstrating the changing underlying pulmonary physiology. Based on analysis of questionnaires, the pulmonary display was perceived as useful information, a desirable addition to the current ICU monitors, and an accurate representation of patient pulmonary information

    The Evaluation of a Graphical Pulmonary Display in Anesthesiology

    Get PDF
    We have developed graphic technology to display data from the respiratory monitors used during anesthesia. The display uses color, texture, shape and emergent features to highlight abnormal pulmonary physiology. Nineteen anesthesiologists participated in a simulator based evaluation (METI, Sarasota, FL.). Half the subjects used the metaphor display and half did not. Each subject was trained for 10 minutes on the pulmonary display. The time difference during the obstructed endotracheal tube did prove significant (p=0.02) in favor of the pulmonary display condition. During the intrinsic PEEP scenario, the subjects treated the patient earlier (positive trend p=0.l) with the pulmonary display compared to the control condition. The group that used the pulmonary display treated a restricted upper airway more quickly (2.3 min vs. 3.9 min). Subjects liked the simplicity of the design. In future studies, we hope to further reduce the time for the detection and treatment of all scenarios by improving the design\u27s intuitiveness, integration, and emergent features

    Method and apparatus for monitoring dynamic cardiovascular function using n-dimensional representatives of critical functions

    Get PDF
    A method, system, apparatus and device for the monitoring, diagnosis and evaluation of the state of a dynamic pulmonary system is disclosed. This method and system provides the processing means for receiving sensed and/or simulated data, converting such data into a displayable object format and displaying such objects in a manner such that the interrelationships between the respective variables can be correlated and identified by a user. This invention provides for the rapid cognitive grasp of the overall state of a pulmonary critical function with respect to a dynamic system

    Transparent decision support for mechanical ventilation using visualization of clinical preferences

    Get PDF
    BACKGROUND: Systems aiding in selecting the correct settings for mechanical ventilation should visualize patient information at an appropriate level of complexity, so as to reduce information overload and to make reasoning behind advice transparent. Metaphor graphics have been applied to this effect, but these have largely been used to display diagnostic and physiologic information, rather than the clinical decision at hand. This paper describes how the conflicting goals of mechanical ventilation can be visualized and applied in making decisions. Data from previous studies are analyzed to assess whether visual patterns exist which may be of use to the clinical decision maker. MATERIALS AND METHODS: The structure and screen visualizations of a commercial clinical decision support system (CDSS) are described, including the visualization of the conflicting goals of mechanical ventilation represented as a hexagon. Retrospective analysis is performed on 95 patients from 2 previous clinical studies applying the CDSS, to identify repeated patterns of hexagon symbols. RESULTS: Visual patterns were identified describing optimal ventilation, over and under ventilation and pressure support, and over oxygenation, with these patterns identified for both control and support modes of mechanical ventilation. Numerous clinical examples are presented for these patterns illustrating their potential interpretation at the bedside. CONCLUSIONS: Visual patterns can be identified which describe the trade-offs required in mechanical ventilation. These may have potential to reduce information overload and help in simple and rapid identification of sub-optimal settings. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12938-021-00974-5

    Hemodynamic monitoring in the era of digital health

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationMedical error causes preventable death in nearly 100,000 patients per year in the US alone. Common sources for error include medication related problems, technical equipment failure, interruptions, complicated and error-prone devices, information overload (providing too much patient data for one person to process effectively), and environmental problems like inadequate lighting or distracting ambient noise. Intensive care units are one of the riskiest locations in a hospital, with up to 9 reported events per 100 patient days. This risk is in large contrast to anesthesia in the operating rooms. Here much advancement in the area of patient safety has been made in the past, dropping the average risk for anesthesia related death to less than 1 in 200,000 anesthetics-an improvement by a factor of 20 in the past 30 years. Improvements in technology and other innovations contributing to this success now need to be adapted for and implemented in the intensive care unit setting. Nurses are increasingly regarded as key decision makers within the healthcare team, as they outnumber physicians 4:1. Reducing nurses' workload and improving medical decision making by providing decision support tools can have a significant impact in reducing the chances of medical errors. This dissertation consists of four manuscripts: 1) a review of previous medical display evaluations, providing insight into solutions that have worked in the past; 2) a study on reducing false alarms and increasing the usefulness of the remaining alarms by introducing alarm delays and detecting alarm context;, such as suctioning automatically silencing ventilator alarms; 3) a study of simplifying the frequent but complicated task of titrating vasoactive medications by providing a titration support tool that predicts blood pressure changes 5 minutes into the future; and 4) a study on supporting the triage of unfamiliar patients by introducing a far-view display that incorporates information from previously disparate devices and presents trend and alarm information at one easy to scan and interpret location

    Challenges and Opportunities for Computerizing the Anesthesia Record

    Get PDF
    journal articleBiomedical Informatic

    Certified Registered Nurse Anesthetist Performance and Perceptions: Use of a Handheld, Computerized, Decision Making Aid During Critical Events in a High-fidelity Human Simulation Environment

    Get PDF
    With the increasing focus on patient safety and human error, understanding how practitioners make decisions during critical incidents is important. Despite the move towards evidence-based practice, research shows that much decision making is based on intuition and heuristics (“rules of thumb”). The purpose of this study was to examine and evaluate the methodologic feasibility of a strategy for comparing traditional cognition versus the use of algorithms programmed on a personal digital assistant (FDA) in the management of unanticipated critical events by certified registered nurse anesthetists (CRNAs). A combined qualitative-quantitative methodology was utilized. The quantitative element consists of a pilot study using a cross-over trial design. Two case scenarios were carried out in a full-scale, high fidelity, simulated anesthesia care delivery environment. Four subjects participated in both scenarios, one without and one with a PDA containing a catalog of approximately 30 events with diagnostic and treatment related information in second scenario. Audio—videotaping of the scenarios allowed for definitive descriptive analysis of items of interest, including time to correct diagnosis and definitive intervention. The qualitative approach consisted of a phenomenological investigation of problem solving and perceptions of FDA use and the simulation experience by the participants using “think aloud” and retrospective verbal reports, semi-structured group interviews, and written evaluations. Qualitative results revealed that participants found the PDA algorithms useful despite some minor technical difficulties and the simulated environment and case scenarios realistic, but also described feelings of expectation, anxiety, and pressure. Problem solving occurred in a hypothetico-deductive manner. More hypotheses were considered when using the PDA. Time to correct diagnosis and treatment varied by scenario, taking less time with the PDA for one but taking longer with the PDA for the other, likely due to differences in pace and intensity of the two scenarios. The methodologic investigation revealed several areas for improvement including more precise control of case scenarios. All participants agreed with the value of using high fidelity simulation, particularly for problem solving of critical events, and provided useful information for more effective utilization of this tool for education and research

    A dynamic visual analytics framework for complex temporal environments

    Get PDF
    Introduction: Data streams are produced by sensors that sample an external system at a periodic interval. As the cost of developing sensors continues to fall, an increasing number of data stream acquisition systems have been deployed to take advantage of the volume and velocity of data streams. An overabundance of information in complex environments have been attributed to information overload, a state of exposure to overwhelming and excessive information. The use of visual analytics provides leverage over potential information overload challenges. Apart from automated online analysis, interactive visual tools provide significant leverage for human-driven trend analysis and pattern recognition. To facilitate analysis and knowledge discovery in the space of multidimensional big data, research is warranted for an online visual analytic framework that supports human-driven exploration and consumption of complex data streams. Method: A novel framework was developed called the temporal Tri-event parameter based Dynamic Visual Analytics (TDVA). The TDVA framework was instantiated in two case studies, namely, a case study involving a hypothesis generation scenario, and a second case study involving a cohort-based hypothesis testing scenario. Two evaluations were conducted for each case study involving expert participants. This framework is demonstrated in a neonatal intensive care unit case study. The hypothesis generation phase of the pipeline is conducted through a multidimensional and in-depth one subject study using PhysioEx, a novel visual analytic tool for physiologic data stream analysis. The cohort-based hypothesis testing component of the analytic pipeline is validated through CoRAD, a visual analytic tool for performing case-controlled studies. Results: The results of both evaluations show improved task performance, and subjective satisfaction with the use of PhysioEx and CoRAD. Results from the evaluation of PhysioEx reveals insight about current limitations for supporting single subject studies in complex environments, and areas for future research in that space. Results from CoRAD also support the need for additional research to explore complex multi-dimensional patterns across multiple observations. From an information systems approach, the efficacy and feasibility of the TDVA framework is demonstrated by the instantiation and evaluation of PhysioEx and CoRAD. Conclusion: This research, introduces the TDVA framework and provides results to validate the deployment of online dynamic visual analytics in complex environments. The TDVA framework was instantiated in two case studies derived from an environment where dynamic and complex data streams were available. The first instantiation enabled the end-user to rapidly extract information from complex data streams to conduct in-depth analysis. The second allowed the end-user to test emerging patterns across multiple observations. To both ends, this thesis provides knowledge that can be used to improve the visual analytic pipeline in dynamic and complex environments
    corecore