832 research outputs found

    Image Encryption Performance Evaluation Based on Poker Test

    Get PDF
    The fast development of image encryption requires performance evaluation metrics. Traditional metrics like entropy do not consider the correlation between local pixel and its neighborhood. These metrics cannot estimate encryption based on image pixel coordinate permutation. A novel effectiveness evaluation metric is proposed in this paper to address the issue. The cipher text image is transformed to bit stream. Then, Poker Test is implemented. The proposed metric considers the neighbor correlations of image by neighborhood selection and clip scan. The randomness of the cipher text image is tested by calculating the chi-square test value. Experiment results verify the efficiency of the proposed metrics

    An efficient data masking for securing medical data using DNA encoding and chaotic system

    Get PDF
    Data security is utmost important for ubiquitous computing of medical/diagnostic data or images. Along with must consider preserving privacy of patients. Recently, deoxyribose nucleic acid (DNA) sequences and chaotic sequence are jointly used for building efficient data masking model. However, the state-of-art model are not robust against noise and cropping attack (CA). Since in existing model most digits of each pixel are not altered. This work present efficient data masking (EDM) method using chaos and DNA based encryption method for securing health care data. For overcoming research challenges effective bit scrambling method is required. Firstly, this work present an efficient bit scrambling using logistic sine map and pseudorandom sequence using chaotic system. Then, DNA substitution is performed among them to resist against differential attack (DA), statistical attack (SA) and CA. Experiment are conducted on standard considering diverse images. The outcome achieved shows proposed model efficient when compared to existing models

    A NOVEL JOINT PERCEPTUAL ENCRYPTION AND WATERMARKING SCHEME (JPEW) WITHIN JPEG FRAMEWORK

    Get PDF
    Due to the rapid growth in internet and multimedia technologies, many new commercial applications like video on demand (VOD), pay-per-view and real-time multimedia broadcast etc, have emerged. To ensure the integrity and confidentiality of the multimedia content, the content is usually watermarked and then encrypted or vice versa. If the multimedia content needs to be watermarked and encrypted at the same time, the watermarking function needs to be performed first followed by encryption function. Hence, if the watermark needs to be extracted then the multimedia data needs to be decrypted first followed by extraction of the watermark. This results in large computational overhead. The solution provided in the literature for this problem is by using what is called partial encryption, in which media data are partitioned into two parts - one to be watermarked and the other is encrypted. In addition, some multimedia applications i.e. video on demand (VOD), Pay-TV, pay-per-view etc, allow multimedia content preview which involves „perceptual‟ encryption wherein all or some selected part of the content is, perceptually speaking, distorted with an encryption key. Up till now no joint perceptual encryption and watermarking scheme has been proposed in the literature. In this thesis, a novel Joint Perceptual Encryption and Watermarking (JPEW) scheme is proposed that is integrated within JPEG standard. The design of JPEW involves the design and development of both perceptual encryption and watermarking schemes that are integrated in JPEG and feasible within the „partial‟ encryption framework. The perceptual encryption scheme exploits the energy distribution of AC components and DC components bitplanes of continuous-tone images and is carried out by selectively encrypting these AC coefficients and DC components bitplanes. The encryption itself is based on a chaos-based permutation reported in an earlier work. Similarly, in contrast to the traditional watermarking schemes, the proposed watermarking scheme makes use of DC component of the image and it is carried out by selectively substituting certain bitplanes of DC components with watermark bits. vi ii Apart from the aforesaid JPEW, additional perceptual encryption scheme, integrated in JPEG, has also been proposed. The scheme is outside of joint framework and implements perceptual encryption on region of interest (ROI) by scrambling the DCT blocks of the chosen ROI. The performances of both, perceptual encryption and watermarking schemes are evaluated and compared with Quantization Index modulation (QIM) based watermarking scheme and reversible Histogram Spreading (RHS) based perceptual encryption scheme. The results show that the proposed watermarking scheme is imperceptible and robust, and suitable for authentication. Similarly, the proposed perceptual encryption scheme outperforms the RHS based scheme in terms of number of operations required to achieve a given level of perceptual encryption and provides control over the amount of perceptual encryption. The overall security of the JPEW has also been evaluated. Additionally, the performance of proposed separate perceptual encryption scheme has been thoroughly evaluated in terms of security and compression efficiency. The scheme is found to be simpler in implementation, have insignificant effect on compression ratios and provide more options for the selection of control factor

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas

    An efficient chaos-based image encryption technique using bitplane decay and genetic operators

    Get PDF
    Social networks have greatly expanded in the last ten years the need for sharing multimedia data. However, on open networks such as the Internet, where security is frequently compromised, it is simple for eavesdroppers to approach the actual contents without much difficulty. Researchers have created a variety of encryption methods to strengthen the security of this transmission and make it difficult for eavesdroppers to get genuine data. However, these conventional approaches increase computing costs and communication overhead and do not offer protection against fresh threats. The problems with current algorithms encourage academics to further investigate the subject and suggest new algorithms that are more effective than current methods, that reduce overhead, and which are equipped with features needed by next-generation multimedia networks. In this paper, a genetic operator-based encryption method for multimedia security is proposed. It has been noted that the proposed algorithm produces improved key strength results. The investigations using attacks on data loss, differential assaults, statistical attacks, and brute force attacks show that the encryption technique suggested has improved security performance. It focuses on two techniques, bitplane slicing and followed by block segmentation and scrambling. The suggested method first divides the plaintext picture into several blocks, which is then followed by block swapping done by the genetic operator used to combine the genetic information of two different images to generate new offspring. The key stream is produced from an iterative chaotic map with infinite collapse (ICMIC). Based on a close-loop modulation coupling (CMC) approach, a three-dimensional hyperchaotic ICMIC modulation map is proposed. By using a hybrid model of multidirectional circular permutation with this map, a brand-new colour image encryption algorithm is created. In this approach, a multidirectional circular permutation is used to disrupt the image's pixel placements, and genetic operations are used to replace the pixel values. According to simulation findings and security research, the technique can fend off brute-force, statistical, differential, known-plaintext, and chosen-plaintext assaults, and has a strong key sensitivity.Web of Science2220art. no. 804
    corecore