171 research outputs found

    Efficient diagnosis of multiprocessor systems under probabilistic models

    Get PDF
    The problem of fault diagnosis in multiprocessor systems is considered under a probabilistic fault model. The focus is on minimizing the number of tests that must be conducted in order to correctly diagnose the state of every processor in the system with high probability. A diagnosis algorithm that can correctly diagnose the state of every processor with probability approaching one in a class of systems performing slightly greater than a linear number of tests is presented. A nearly matching lower bound on the number of tests required to achieve correct diagnosis in arbitrary systems is also proven. Lower and upper bounds on the number of tests required for regular systems are also presented. A class of regular systems which includes hypercubes is shown to be correctly diagnosable with high probability. In all cases, the number of tests required under this probabilistic model is shown to be significantly less than under a bounded-size fault set model. Because the number of tests that must be conducted is a measure of the diagnosis overhead, these results represent a dramatic improvement in the performance of system-level diagnosis techniques

    (t, k)-diagnosable system: A generalization of the PMC models

    Get PDF
    ln this paper, we introduce a new model for diagnosable systems called (t, k)-diagnosable system which guarantees that at least k faulty units (processors) in a system are detected provided that the number of faulty units does not exceed t. This system includes classical one-step diagnosable systems and sequentially diagnosable systems. We prove a necessary and sufficient condition for (t, k)-diagnosable system, and discuss a lower bound for diagnosability. Finally, we deal with a relation between (t, k)-diagnosability and diagnosability of classical basic models

    Descriptional complexity of cellular automata and decidability questions

    Get PDF
    We study the descriptional complexity of cellular automata (CA), a parallel model of computation. We show that between one of the simplest cellular models, the realtime-OCA. and "classical" models like deterministic finite automata (DFA) or pushdown automata (PDA), there will be savings concerning the size of description not bounded by any recursive function, a so-called nonrecursive trade-off. Furthermore, nonrecursive trade-offs are shown between some restricted classes of cellular automata. The set of valid computations of a Turing machine can be recognized by a realtime-OCA. This implies that many decidability questions are not even semi decidable for cellular automata. There is no pumping lemma and no minimization algorithm for cellular automata

    On the descriptional complexity of iterative arrays

    Get PDF
    The descriptional complexity of iterative arrays (lAs) is studied. Iterative arrays are a parallel computational model with a sequential processing of the input. It is shown that lAs when compared to deterministic finite automata or pushdown automata may provide savings in size which are not bounded by any recursive function, so-called non-recursive trade-offs. Additional non-recursive trade-offs are proven to exist between lAs working in linear time and lAs working in real time. Furthermore, the descriptional complexity of lAs is compared with cellular automata (CAs) and non-recursive trade-offs are proven between two restricted classes. Finally, it is shown that many decidability questions for lAs are undecidable and not semidecidable
    • …
    corecore