4,163 research outputs found

    Rice_Phospho 1.0: a new rice-specific SVM predictor for protein phosphorylation sites

    Get PDF
    Experimentally-determined or computationally-predicted protein phosphorylation sites for distinctive species are becoming increasingly common. In this paper, we compare the predictive performance of a novel classification algorithm with different encoding schemes to develop a rice-specific protein phosphorylation site predictor. Our results imply that the combination of Amino acid occurrence Frequency with Composition of K-Spaced Amino Acid Pairs (AF-CKSAAP) provides the best description of relevant sequence features that surround a phosphorylation site. A support vector machine (SVM) using AF-CKSAAP achieves the best performance in classifying rice protein phophorylation sites when compared to the other algorithms. We have used SVM with AF-CKSAAP to construct a rice-specific protein phosphorylation sites predictor, Rice-Phospho 1.0 (http://bioinformatics.fafu.edu.cn/rice-phospho1.0). We measure the Accuracy (ACC) and Matthews Correlation Coefficient (MCC) of Rice-Phospho 1.0 to be 82.0% and 0.64, significantly higher than those measures for other predictors such as Scansite, Musite, PlantPhos and PhosphoRice. Rice-Phospho 1.0 also successfully predicted the experimentally identified phosphorylation sites in LOC-Os03g51600.1, a protein sequence which did not appear in the training dataset. In summary, Rice-phospho 1.0 outputs reliable predictions of protein phosphorylation sites in rice, and will serve as a useful tool to the community

    RF-Phos: A Novel General Phosphorylation Site Prediction Tool Based on Random Forest

    Get PDF

    PlantPhos: using maximal dependence decomposition to identify plant phosphorylation sites with substrate site specificity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein phosphorylation catalyzed by kinases plays crucial regulatory roles in intracellular signal transduction. Due to the difficulty in performing high-throughput mass spectrometry-based experiment, there is a desire to predict phosphorylation sites using computational methods. However, previous studies regarding <it>in silico </it>prediction of plant phosphorylation sites lack the consideration of kinase-specific phosphorylation data. Thus, we are motivated to propose a new method that investigates different substrate specificities in plant phosphorylation sites.</p> <p>Results</p> <p>Experimentally verified phosphorylation data were extracted from TAIR9-a protein database containing 3006 phosphorylation data from the plant species <it>Arabidopsis thaliana</it>. In an attempt to investigate the various substrate motifs in plant phosphorylation, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. Profile hidden Markov model (HMM) is then applied to learn a predictive model for each subgroup. Cross-validation evaluation on the MDD-clustered HMMs yields an average accuracy of 82.4% for serine, 78.6% for threonine, and 89.0% for tyrosine models. Moreover, independent test results using <it>Arabidopsis thaliana </it>phosphorylation data from UniProtKB/Swiss-Prot show that the proposed models are able to correctly predict 81.4% phosphoserine, 77.1% phosphothreonine, and 83.7% phosphotyrosine sites. Interestingly, several MDD-clustered subgroups are observed to have similar amino acid conservation with the substrate motifs of well-known kinases from Phospho.ELM-a database containing kinase-specific phosphorylation data from multiple organisms.</p> <p>Conclusions</p> <p>This work presents a novel method for identifying plant phosphorylation sites with various substrate motifs. Based on cross-validation and independent testing, results show that the MDD-clustered models outperform models trained without using MDD. The proposed method has been implemented as a web-based plant phosphorylation prediction tool, PlantPhos <url>http://csb.cse.yzu.edu.tw/PlantPhos/</url>. Additionally, two case studies have been demonstrated to further evaluate the effectiveness of PlantPhos.</p

    SUMOhydro: A Novel Method for the Prediction of Sumoylation Sites Based on Hydrophobic Properties

    Get PDF
    Sumoylation is one of the most essential mechanisms of reversible protein post-translational modifications and is a crucial biochemical process in the regulation of a variety of important biological functions. Sumoylation is also closely involved in various human diseases. The accurate computational identification of sumoylation sites in protein sequences aids in experimental design and mechanistic research in cellular biology. In this study, we introduced amino acid hydrophobicity as a parameter into a traditional binary encoding scheme and developed a novel sumoylation site prediction tool termed SUMOhydro. With the assistance of a support vector machine, the proposed method was trained and tested using a stringent non-redundant sumoylation dataset. In a leave-one-out cross-validation, the proposed method yielded an excellent performance with a correlation coefficient, specificity, sensitivity and accuracy equal to 0.690, 98.6%, 71.1% and 97.5%, respectively. In addition, SUMOhydro has been benchmarked against previously described predictors based on an independent dataset, thereby suggesting that the introduction of hydrophobicity as an additional parameter could assist in the prediction of sumoylation sites. Currently, SUMOhydro is freely accessible at http://protein.cau.edu.cn/others/SUMOhydro/

    Design and data analysis of kinome microarrays

    Get PDF
    Catalyzed by protein kinases, phosphorylation is the most important post-translational modification in eukaryotes and is involved in the regulation of almost all cellular processes. Investigating phosphorylation events and how they change in response to different biological conditions is integral to understanding cellular signaling processes in general, as well as to defining the role of phosphorylation in health and disease. A recently-developed technology for studying phosphorylation events is the kinome microarray, which consists of several hundred "spots" arranged in a grid-like pattern on a glass slide. Each spot contains many peptides of a particular amino acid sequence chemically fixed to the slide, with different spots containing peptides with different sequences. Each peptide is a subsequence of a full protein, containing an amino acid residue that is known or suspected to undergo phosphorylation in vivo, as well as several surrounding residues. When a kinome microarray is exposed to cell lysate, the protein kinases in the lysate catalyze the phosphorylation of the peptides on the array. By measuring the degree to which the peptides comprising each spot are phosphorylated, insight can be gained into the upregulation or downregulation of signaling pathways in response to different biological treatments or conditions. There are two main computational challenges associated with kinome microarrays. The first is array design, which involves selecting the peptides to be included on a given array. The level of difficulty of this task depends largely on the number of phosphorylation sites that have been experimentally identified in the proteome of the organism being studied. For instance, thousands of phosphorylation sites are known for human and mouse, allowing considerable freedom to select peptides that are relevant to the problem being examined. In contrast, few sites are known for, say, honeybee and soybean. For such organisms, it is useful to expand the set of possible peptides by using computational techniques to predict probable phosphorylation sites. In this thesis, existing techniques for the computational prediction of phosphorylation sites are reviewed. In addition, two novel methods are described for predicting phosphorylation events in organisms with few known sites, with each method using a fundamentally different approach. The first technique, called PHOSFER, uses a random forest-based machine-learning strategy, while the second, called DAPPLE, takes advantage of sequence homology between known sites and the proteome of interest. Both methods are shown to allow quicker or more accurate predictions in organisms with few known sites than comparable previous techniques. Therefore, the use of kinome microarrays is no longer limited to the study of organisms having many known phosphorylation sites; rather, this technology can potentially be applied to any organism having a sequenced genome. It is shown that PHOSFER and DAPPLE are suitable for identifying phosphorylation sites in a wide variety of organisms, including cow, honeybee, and soybean. The second computational challenge is data analysis, which involves the normalization, clustering, statistical analysis, and visualization of data resulting from the arrays. While software designed for the analysis of DNA microarrays has also been used for kinome arrays, differences between the two technologies prompted the development of PIIKA, a software package specifically designed for the analysis of kinome microarray data. By comparing with methods used for DNA microarrays, it is shown that PIIKA improves the ability to identify biological pathways that are differentially regulated in a treatment condition compared to a control condition. Also described is an updated version, PIIKA 2, which contains improvements and new features in the areas of clustering, statistical analysis, and data visualization. Given the previous absence of dedicated tools for analyzing kinome microarray data, as well as their wealth of features, PIIKA and PIIKA 2 represent an important step in maximizing the scientific value of this technology. In addition to the above techniques, this thesis presents three studies involving biological applications of kinome microarray analysis. The first study demonstrates the existence of "kinotypes" - species- or individual-specific kinome profiles - which has implications for personalized medicine and for the use of model organisms in the study of human disease. The second study uses kinome analysis to characterize how the calf immune system responds to infection by the bacterium Mycobacterium avium subsp. paratuberculosis. Finally, the third study uses kinome arrays to study parasitism of honeybees by the mite Varroa destructor, which is thought to be a major cause of colony collapse disorder. In order to make the methods described above readily available, a website called the SAskatchewan PHosphorylation Internet REsource (SAPHIRE) has been developed. Located at the URL http://saphire.usask.ca, SAPHIRE allows researchers to easily make use of PHOSFER, DAPPLE, and PIIKA 2. These resources facilitate both the design and data analysis of kinome microarrays, making them an even more effective technique for studying cellular signaling

    Integrated data management and validation platform for phosphorylated tandem mass spectrometry data

    Get PDF
    MS/MS is a widely used method for proteome-wide analysis of protein expression and PTMs. The thousands of MS/MS spectra produced from a single experiment pose a major challenge for downstream analysis. Standard programs, such as MASCOT, provide peptide assignments for many of the spectra, including identification of PTM sites, but these results are plagued by false-positive identifications. In phosphoproteomic experiments, only a single peptide assignment is typically available to support identification of each phosphorylation site, and hence minimizing false positives is critical. Thus, tedious manual validation is often required to increase confidence in the spectral assignments. We have developed phoMSVal, an open-source platform for managing MS/MS data and automatically validating identified phosphopeptides. We tested five classification algorithms with 17 extracted features to separate correct peptide assignments from incorrect ones using over 2600 manually curated spectra. The naïve Bayes algorithm was among the best classifiers with an AUC value of 97% and PPV of 97% for phosphotyrosine data. This classifier required only three features to achieve a 76% decrease in false positives as compared with MASCOT while retaining 97% of true positives. This algorithm was able to classify an independent phosphoserine/threonine data set with AUC value of 93% and PPV of 91%, demonstrating the applicability of this method for all types of phospho-MS/MS data. PhoMSVal is available at http://csbi.ltdk.helsinki.fi/phomsval.National Science Foundation (U.S.). Graduate Research Fellowship Progra

    Thirty years of molecular dynamics simulations on posttranslational modifications of proteins

    Full text link
    Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.Comment: 64 pages, 11 figure

    Nuclear export signals (NESs) in Arabidopsis thaliana : development and experimental validation of a prediction tool

    Get PDF
    Rubiano Castellanos CC. Nuclear export signals (NESs) in Arabidopsis thaliana : development and experimental validation of a prediction tool. Bielefeld (Germany): Bielefeld University; 2010.It is well established that nucleo-cytoplasmic shuttling regulates not only the localization but also the activity of many proteins like transcription factors, cell cycle regulators and tumor suppressor proteins just to mention some. Also in plants the nucleo-cytoplasmic partitioning of proteins emerges as an important regulation mechanism for many plant-specific processes. One requirement for a protein to shuttle between nucleus and cytoplasm lies in its nuclear export activity. The widely used mechanism for export of proteins from the nucleus involves the receptor Exportin 1 and the presence of a nuclear export signal (NES) in the cargo protein. Given the big amount of sequence data available nowadays the possibility to use a computational tool to predict the proteins potentially containing an NES would help to facilitate the screening and experimental characterization of NES-containing proteins. However, the computational prediction of NESs is a challenging task. Currently there is only one NES prediction tool and that is unfortunately not accurate for predicting these signals in proteins of plants. In that direction, this study aimed mainly at developing a prediction method for identifying NESs in proteins from Arabidopsis and to validate its usefulness experimentally. It included also the definition of the influence of the NES protein context in the nuclear export activity of specific proteins of Arabidopsis. Three machine-learning algorithms (i.e. k-NN, SVM and Random Forests) were trained with experimentally validated NES sequences from proteins of Arabidopsis and other organisms. Two kinds of features were included, the sequence of the NESs expressed as the score obtained from an HMM profile constructed with the NES sequences of proteins from Arabidopsis, and physicochemical properties of the amino acid residues expressed as amino acid index values. The Random Forest classifier was selected among the three classifiers after evaluation of the performance by different methods. It showed to be highly accurate (accuracy values over 85 percent, classification error around 10 percent, MCC around 0.7 and area under the ROC curve around 0.90) and performed better than the other two trained classifiers. Using the Random Forest classifier around 5000 proteins from the total of protein sequences from Arabidopsis were predicted as containing NESs. A group of these proteins was selected by using Gene Ontologies (GO) and from this last group, 13 proteins were experimentally tested for nuclear export activity. 11 out of those 13 proteins showed positive interaction with the receptor Exportin 1 (XPO1a) from Arabidopsis in yeast two-hybrid assays. The proteins showing nuclear export activity include 9 transcription factors and 2 DNA metabolism-related proteins. Furthermore, it was established that the amino acid residues located between the hydrophobic residues in the NES as well as the protein structure of the regions around the NES could modify the nuclear export activity of some proteins. In conclusion, this work presents a new prediction tool for NESs in proteins of Arabidopsis based on a Random Forest classifier. The experimental validation of the nuclear export activity in a selected group of proteins is an indicative of the usefulness of the tool. From the biological point of view, the nuclear export activity observed in those proteins strongly suggest that nucleo-cytoplasmic partitioning could be involved in the regulation of their functions. For the follow up research the further characterization of the proteins showing positive nuclear export activity as well as the validation of additional predicted NES-containing proteins is envisioned. In the near future, the developed tool is going to be available as a web application to facilitate and promote its further usage

    pkaPS: prediction of protein kinase A phosphorylation sites with the simplified kinase-substrate binding model

    Get PDF
    BACKGROUND: Protein kinase A (cAMP-dependent kinase, PKA) is a serine/threonine kinase, for which ca. 150 substrate proteins are known. Based on a refinement of the recognition motif using the available experimental data, we wished to apply the simplified substrate protein binding model for accurate prediction of PKA phosphorylation sites, an approach that was previously successful for the prediction of lipid posttranslational modifications and of the PTS1 peroxisomal translocation signal. RESULTS: Approximately 20 sequence positions flanking the phosphorylated residue on both sides have been found to be restricted in their sequence variability (region -18...+23 with the site at position 0). The conserved physical pattern can be rationalized in terms of a qualitative binding model with the catalytic cleft of the protein kinase A. Positions -6...+4 surrounding the phosphorylation site are influenced by direct interaction with the kinase in a varying degree. This sequence stretch is embedded in an intrinsically disordered region composed preferentially of hydrophilic residues with flexible backbone and small side chain. This knowledge has been incorporated into a simplified analytical model of productive binding of substrate proteins with PKA. CONCLUSION: The scoring function of the pkaPS predictor can confidently discriminate PKA phosphorylation sites from serines/threonines with non-permissive sequence environments (sensitivity of ~96% at a specificity of ~94%). The tool "pkaPS" has been applied on the whole human proteome. Among new predicted PKA targets, there are entirely uncharacterized protein groups as well as apparently well-known families such as those of the ribosomal proteins L21e, L22 and L6. AVAILABILITY: The supplementary data as well as the prediction tool as WWW server are available at . REVIEWERS: Erik van Nimwegen (Biozentrum, University of Basel, Switzerland), Sandor Pongor (International Centre for Genetic Engineering and Biotechnology, Trieste, Italy), Igor Zhulin (University of Tennessee, Oak Ridge National Laboratory, USA)
    corecore