39,938 research outputs found

    A Reverse Localization Scheme for Underwater Acoustic Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks (UWSNs) provide new opportunities to observe and predict the behavior of aquatic environments. In some applications like target tracking or disaster prevention, sensed data is meaningless without location information. In this paper, we propose a novel 3D centralized, localization scheme for mobile underwater wireless sensor network, named Reverse Localization Scheme or RLS in short. RLS is an event-driven localization method triggered by detector sensors for launching localization process. RLS is suitable for surveillance applications that require very fast reactions to events and could report the location of the occurrence. In this method, mobile sensor nodes report the event toward the surface anchors as soon as they detect it. They do not require waiting to receive location information from anchors. Simulation results confirm that the proposed scheme improves the energy efficiency and reduces significantly localization response time with a proper level of accuracy in terms of mobility model of water currents. Major contributions of this method lie on reducing the numbers of message exchange for localization, saving the energy and decreasing the average localization response time

    Development an accurate and stable range-free localization scheme for anisotropic wireless sensor networks

    Get PDF
    With the high-speed development of wireless radio technology, numerous sensor nodes are integrated into wireless sensor networks, which has promoted plentiful location-based applications that are successfully applied in various fields, such as monitoring natural disasters and post-disaster rescue. Location information is an integral part of wireless sensor networks, without location information, all received data will lose meaning. However, the current localization scheme is based on equipped GPS on every node, which is not cost-efficient and not suitable for large-scale wireless sensor networks and outdoor environments. To address this problem, research scholars have proposed a rangefree localization scheme which only depends on network connectivity. Nevertheless, as the representative range-free localization scheme, Distance Vector-Hop (DV-Hop) localization algorithm demonstrates extremely poor localization accuracy under anisotropic wireless sensor networks. The previous works assumed that the network environment is evenly and uniformly distributed, ignored anisotropic factors in a real setting. Besides, most research academics improved the localization accuracy to a certain degree, but at expense of high communication overhead and computational complexity, which cannot meet the requirements of high-precision applications for anisotropic wireless sensor networks. Hence, finding a fast, accurate, and strong solution to solve the range-free localization problem is still a big challenge. Accordingly, this study aspires to bridge the research gap by exploring a new DV-Hop algorithm to build a fast, costefficient, strong range-free localization scheme. This study developed an optimized variation of the DV-Hop localization algorithm for anisotropic wireless sensor networks. To address the poor localization accuracy problem in irregular C-shaped network topology, it adopts an efficient Grew Wolf Optimizer instead of the least-squares method. The dynamic communication range is introduced to refine hop between anchor nodes, and new parameters are recommended to optimize network protocol to balance energy cost in the initial step. Besides, the weighted coefficient and centroid algorithm is employed to reduce cumulative error by hop count and cut down computational complexity. The developed localization framework is separately validated and evaluated each optimized step under various evaluation criteria, in terms of accuracy, stability, and cost, etc. The results of EGWO-DV-Hop demonstrated superior localization accuracy under both topologies, the average localization error dropped up to 87.79% comparing with basic DV-Hop under C-shaped topology. The developed enhanced DWGWO-DVHop localization algorithm illustrated a favorable result with high accuracy and strong stability. The overall localization error is around 1.5m under C-shaped topology, while the traditional DV-Hop algorithm is large than 20m. Generally, the average localization error went down up to 93.35%, compared with DV-Hop. The localization accuracy and robustness of comparison indicated that the developed DWGWO-DV-Hop algorithm super outperforms the other classical range-free methods. It has the potential significance to be guided and applied in practical location-based applications for anisotropic wireless sensor networks

    Extension to HiRLoc Algorithm for Localization Error Computation in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) have gained importance in recent years as this support a large spectrum of applications such as automotive, health, military, environmental, home and office. Various algorithms have been proposed for making this technology more adaptive the existing algorithms address issues such as safety, security, power consumption, lifetime and localization. This paper presents an extension to HiRLoc algorithm and highlights its benefits. Extended HiRLoc significantly reduce the average localization error by suggesting a new method directional antenna based scheme

    Social Network Analysis Based Localization Technique with Clustered Closeness Centrality for 3D Wireless Sensor Networks

    Full text link
    [EN] In this paper, we proposed a new wireless localization technique based on the ideology of social network analysis (SNA), to study the different properties of networks as a graph. Centrality is a main concept in SNA, so we propose using closeness centrality (CC) as a measurement to denote the importance of the node inside the network due to its geo-location to others. The node with highest degree of CC is chosen as a cluster heads, then each cluster head can form its trilateration process to collect data from its cluster. The selection of closest cluster based on CC values, and the unknown node's location can be estimated through the trilateration process. To form a perfect trilateration, the cluster head chooses three anchor nodes. The proposed algorithm provides high accuracy even in different network topologies like concave shape, O shape, and C shape as compared to existing received signal strength indicator (RSSI) techniques. Matlab simulation results based on practical radio propagation data sets showed a localization error of 0.32 m with standard deviation of 0.26 m.This work was fully supported by the Vice Chancellor Doctoral Scholarship at Auckland University of Technology, New Zealand.Ahmad, T.; Li, XJ.; Seet, B.; Cano, J. (2020). Social Network Analysis Based Localization Technique with Clustered Closeness Centrality for 3D Wireless Sensor Networks. Electronics. 9(5):1-19. https://doi.org/10.3390/electronics9050738S11995Zhou, B., Yao, X., Yang, L., Yang, S., Wu, S., Kim, Y., & Ai, L. (2019). Accurate Rigid Body Localization Using DoA Measurements from a Single Base Station. Electronics, 8(6), 622. doi:10.3390/electronics8060622Ahmad, T., Li, X., & Seet, B.-C. (2017). Parametric Loop Division for 3D Localization in Wireless Sensor Networks. Sensors, 17(7), 1697. doi:10.3390/s17071697Kaur, A., Kumar, P., & Gupta, G. P. (2019). A weighted centroid localization algorithm for randomly deployed wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 31(1), 82-91. doi:10.1016/j.jksuci.2017.01.007Khelifi, F., Bradai, A., Benslimane, A., Rawat, P., & Atri, M. (2018). A Survey of Localization Systems in Internet of Things. Mobile Networks and Applications, 24(3), 761-785. doi:10.1007/s11036-018-1090-3Sanchez-Iborra, R., G. Liaño, I., Simoes, C., Couñago, E., & Skarmeta, A. (2018). Tracking and Monitoring System Based on LoRa Technology for Lightweight Boats. Electronics, 8(1), 15. doi:10.3390/electronics8010015Sayed, A. H., Tarighat, A., & Khajehnouri, N. (2005). Network-based wireless location: challenges faced in developing techniques for accurate wireless location information. IEEE Signal Processing Magazine, 22(4), 24-40. doi:10.1109/msp.2005.1458275MaƟazade, E., Ruixin Niu, Varshney, P. K., & Keskinoz, M. (2010). Energy Aware Iterative Source Localization for Wireless Sensor Networks. IEEE Transactions on Signal Processing, 58(9), 4824-4835. doi:10.1109/tsp.2010.2051433Yang, X., Kong, Q., & Xie, X. (2009). One-Dimensional Localization Algorithm Based on Signal Strength Ratio. International Journal of Distributed Sensor Networks, 5(1), 79-79. doi:10.1080/15501320802571822Xie, S., Wang, T., Hao, X., Yang, M., Zhu, Y., & Li, Y. (2019). Localization and Frequency Identification of Large-Range Wide-Band Electromagnetic Interference Sources in Electromagnetic Imaging System. Electronics, 8(5), 499. doi:10.3390/electronics8050499Zhu, X., Wu, X., & Chen, G. (2013). Relative localization for wireless sensor networks with linear topology. Computer Communications, 36(15-16), 1581-1591. doi:10.1016/j.comcom.2013.07.007Meng, W., Xiao, W., & Xie, L. (2011). An Efficient EM Algorithm for Energy-Based Multisource Localization in Wireless Sensor Networks. IEEE Transactions on Instrumentation and Measurement, 60(3), 1017-1027. doi:10.1109/tim.2010.2047035Lim, H., & Hou, J. C. (2009). Distributed localization for anisotropic sensor networks. ACM Transactions on Sensor Networks, 5(2), 1-26. doi:10.1145/1498915.1498917Xiaohong Sheng, & Yu-Hen Hu. (2005). Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Transactions on Signal Processing, 53(1), 44-53. doi:10.1109/tsp.2004.838930Yun Wang, Xiaodong Wang, Demin Wang, & Agrawal, D. P. (2009). Range-Free Localization Using Expected Hop Progress in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 20(10), 1540-1552. doi:10.1109/tpds.2008.239Huang, H., & Zheng, Y. R. (2018). Node localization with AoA assistance in multi-hop underwater sensor networks. Ad Hoc Networks, 78, 32-41. doi:10.1016/j.adhoc.2018.05.005ZĂ ruba, G. V., Huber, M., Kamangar, F. A., & Chlamtac, I. (2006). Indoor location tracking using RSSI readings from a single Wi-Fi access point. Wireless Networks, 13(2), 221-235. doi:10.1007/s11276-006-5064-1Singh, M., & Khilar, P. M. (2015). An analytical geometric range free localization scheme based on mobile beacon points in wireless sensor network. Wireless Networks, 22(8), 2537-2550. doi:10.1007/s11276-015-1116-8Yiqiang Chen, Qiang Yang, Jie Yin, & Xiaoyong Chai. (2006). Power-efficient access-point selection for indoor location estimation. IEEE Transactions on Knowledge and Data Engineering, 18(7), 877-888. doi:10.1109/tkde.2006.112Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4), 408-421. doi:10.1109/tpds.2003.1195412Safa, H. (2014). A novel localization algorithm for large scale wireless sensor networks. Computer Communications, 45, 32-46. doi:10.1016/j.comcom.2014.03.020Kaemarungsi, K., & Krishnamurthy, P. (2012). Analysis of WLAN’s received signal strength indication for indoor location fingerprinting. Pervasive and Mobile Computing, 8(2), 292-316. doi:10.1016/j.pmcj.2011.09.003Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’Dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137-2148. doi:10.1109/tsp.2003.814469Niculescu, D. (2003). Telecommunication Systems, 22(1/4), 267-280. doi:10.1023/a:1023403323460Mahyar, H., Hasheminezhad, R., Ghalebi K., E., Nazemian, A., Grosu, R., Movaghar, A., & Rabiee, H. R. (2018). Compressive sensing of high betweenness centrality nodes in networks. Physica A: Statistical Mechanics and its Applications, 497, 166-184. doi:10.1016/j.physa.2017.12.145Plets, D., Bastiaens, S., Martens, L., & Joseph, W. (2019). An Analysis of the Impact of LED Tilt on Visible Light Positioning Accuracy. Electronics, 8(4), 389. doi:10.3390/electronics8040389RSSI Datasethttps://github.com/pspachos/RSSI-DatasetAhmad, T., Li, X. J., & Seet, B.-C. (2019). Noise Reduction Scheme for Parametric Loop Division 3D Wireless Localization Algorithm Based on Extended Kalman Filtering. Journal of Sensor and Actuator Networks, 8(2), 24. doi:10.3390/jsan8020024Benson, S. J., Ye, Y., & Zhang, X. (2000). Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization. SIAM Journal on Optimization, 10(2), 443-461. doi:10.1137/s105262349732800

    An Effective PSO-Based Node Localization Scheme for Wireless Sensor Networks

    Get PDF
    [[abstract]]Wireless sensor networks (WSNs) usually employ different ranging techniques to measure the distance between an unknown node and its neighboring anchor nodes, and based on the measured distance to estimate the position of the unknown node. This paper presents an effective Particle Swarm Optimization (PSO)-based Localization Scheme using the Radio Signal Strength (RSS) ranging technique. Modified from the iterative multilateration algorithm, our scheme is unique in adopting the location data of remote anchors provided by the closest neighbor anchors of an unknown node to estimate the unknown nodepsilas position and using the PSO algorithm to further reduce error accumulation. The new scheme meanwhile takes in a modified DV-distance approach to raise the success ratios of locating unknown nodes. Compared with related schemes, our scheme is shown through simulations to perform constantly better in increasing localization success ratios and decreasing location errors -- at reduced cost.[[conferencetype]]朋際[[conferencedate]]20081201~20081204[[iscallforpapers]]Y[[conferencelocation]]Dunedin , New Zealan
    • 

    corecore