17,628 research outputs found

    Parallel Hybrid Trajectory Based Metaheuristics for Real-World Problems

    Get PDF
    G. Luque, E. Alba, Parallel Hybrid Trajectory Based Metaheuristics for Real-World Problems, In Proceedings of Intelligent Networking and Collaborative Systems, pp. 184-191, 2-4 September, 2015, Taipei, Taiwan, IEEE PressThis paper proposes a novel algorithm combining path relinking with a set of cooperating trajectory based parallel algorithms to yield a new metaheuristic of enhanced search features. Algorithms based on the exploration of the neighborhood of a single solution, like simulated annealing (SA), have offered accurate results for a large number of real-world problems in the past. Because of their trajectory based nature, some advanced models such as the cooperative one are competitive in academic problems, but still show many limitations in addressing large scale instances. In addition, the field of parallel models for trajectory methods has not deeply been studied yet (at least in comparison with parallel population based models). In this work, we propose a new hybrid algorithm which improves cooperative single solution techniques by using path relinking, allowing both to reduce the global execution time and to improve the efficacy of the method. We applied here this new model using a large benchmark of instances of two real-world NP-hard problems: DNA fragment assembly and QAP problems, with competitive results.Universidad de MƔlaga. Campus de Excelencia Internacional Andalucƭa Tech

    A hybrid genetic algorithm and inver over approach for the travelling salesman problem

    Get PDF
    This article posted here with permission of the IEEE - Copyright @ 2010 IEEEThis paper proposes a two-phase hybrid approach for the travelling salesman problem (TSP). The first phase is based on a sequence based genetic algorithm (SBGA) with an embedded local search scheme. Within the SBGA, a memory is introduced to store good sequences (sub-tours) extracted from previous good solutions and the stored sequences are used to guide the generation of offspring via local search during the evolution of the population. Additionally, we also apply some techniques to adapt the key parameters based on whether the best individual of the population improves or not and maintain the diversity. After SBGA finishes, the hybrid approach enters the second phase, where the inver over (IO) operator, which is a state-of-the-art algorithm for the TSP, is used to further improve the solution quality of the population. Experiments are carried out to investigate the performance of the proposed hybrid approach in comparison with several relevant algorithms on a set of benchmark TSP instances. The experimental results show that the proposed hybrid approach is efficient in finding good quality solutions for the test TSPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1

    Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly

    Full text link
    Motivation: Eugene Myers in his string graph paper (Myers, 2005) suggested that in a string graph or equivalently a unitig graph, any path spells a valid assembly. As a string/unitig graph also encodes every valid assembly of reads, such a graph, provided that it can be constructed correctly, is in fact a lossless representation of reads. In principle, every analysis based on whole-genome shotgun sequencing (WGS) data, such as SNP and insertion/deletion (INDEL) calling, can also be achieved with unitigs. Results: To explore the feasibility of using de novo assembly in the context of resequencing, we developed a de novo assembler, fermi, that assembles Illumina short reads into unitigs while preserving most of information of the input reads. SNPs and INDELs can be called by mapping the unitigs against a reference genome. By applying the method on 35-fold human resequencing data, we showed that in comparison to the standard pipeline, our approach yields similar accuracy for SNP calling and better results for INDEL calling. It has higher sensitivity than other de novo assembly based methods for variant calling. Our work suggests that variant calling with de novo assembly be a beneficial complement to the standard variant calling pipeline for whole-genome resequencing. In the methodological aspects, we proposed FMD-index for forward-backward extension of DNA sequences, a fast algorithm for finding all super-maximal exact matches and one-pass construction of unitigs from an FMD-index. Availability: http://github.com/lh3/fermi Contact: [email protected]: Rev2: submitted version with minor improvements; 7 page

    A sequence based genetic algorithm with local search for the travelling salesman problem

    Get PDF
    The standard Genetic Algorithm often suffers from slow convergence for solving combinatorial optimization problems. In this study, we present a sequence based genetic algorithm (SBGA) for the symmetric travelling salesman problem (TSP). In our proposed method, a set of sequences are extracted from the best individuals, which are used to guide the search of SBGA. Additionally, some procedures are applied to maintain the diversity by breaking the selected sequences into sub tours if the best individual of the population does not improve. SBGA is compared with the inver-over operator, a state-of-the-art algorithm for the TSP, on a set of benchmark TSPs. Experimental results show that the convergence speed of SBGA is very promising and much faster than that of the inver-over algorithm and that SBGA achieves a similar solution quality on all test TSPs
    • ā€¦
    corecore