60 research outputs found

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Interference Aware Cognitive Femtocell Networks

    Get PDF
    Femtocells Access Points (FAP) are low power, plug and play home base stations which are designed to extend the cellular radio range in indoor environments where macrocell coverage is generally poor. They offer significant increases in data rates over a short range, enabling high speed wireless and mobile broadband services, with the femtocell network overlaid onto the macrocell in a dual-tier arrangement. In contrast to conventional cellular systems which are well planned, FAP are arbitrarily installed by the end users and this can create harmful interference to both collocated femtocell and macrocell users. The interference becomes particularly serious in high FAP density scenarios and compromises the ensuing data rate. Consequently, effective management of both cross and co-tier interference is a major design challenge in dual-tier networks. Since traditional radio resource management techniques and architectures for single-tier systems are either not applicable or operate inefficiently, innovative dual-tier approaches to intelligently manage interference are required. This thesis presents a number of original contributions to fulfill this objective including, a new hybrid cross-tier spectrum sharing model which builds upon an existing fractional frequency reuse technique to ensure minimal impact on the macro-tier resource allocation. A new flexible and adaptive virtual clustering framework is then formulated to alleviate co-tier interference in high FAP densities situations and finally, an intelligent coverage extension algorithm is developed to mitigate excessive femto-macrocell handovers, while upholding the required quality of service provision. This thesis contends that to exploit the undoubted potential of dual-tier, macro-femtocell architectures an interference awareness solution is necessary. Rigorous evidence confirms that noteworthy performance improvements can be achieved in the quality of the received signal and throughput by applying cognitive methods to manage interference
    • …
    corecore