2,624 research outputs found

    Extending the scope of microscopic solvability: Combination of the Kruskal-Segur method with Zauderer decomposition

    Full text link
    Successful applications of the Kruskal-Segur approach to interfacial pattern formation have remained limited due to the necessity of an integral formulation of the problem. This excludes nonlinear bulk equations, rendering convection intractable. Combining the method with Zauderer's asymptotic decomposition scheme, we are able to strongly extend its scope of applicability and solve selection problems based on free boundary formulations in terms of partial differential equations alone. To demonstrate the technique, we give the first analytic solution of the problem of velocity selection for dendritic growth in a forced potential flow.Comment: Submitted to Europhys. Letters, No figures, 5 page

    Most Likely Separation of Intensity and Warping Effects in Image Registration

    Full text link
    This paper introduces a class of mixed-effects models for joint modeling of spatially correlated intensity variation and warping variation in 2D images. Spatially correlated intensity variation and warp variation are modeled as random effects, resulting in a nonlinear mixed-effects model that enables simultaneous estimation of template and model parameters by optimization of the likelihood function. We propose an algorithm for fitting the model which alternates estimation of variance parameters and image registration. This approach avoids the potential estimation bias in the template estimate that arises when treating registration as a preprocessing step. We apply the model to datasets of facial images and 2D brain magnetic resonance images to illustrate the simultaneous estimation and prediction of intensity and warp effects

    Group-theoretic models of the inversion process in bacterial genomes

    Full text link
    The variation in genome arrangements among bacterial taxa is largely due to the process of inversion. Recent studies indicate that not all inversions are equally probable, suggesting, for instance, that shorter inversions are more frequent than longer, and those that move the terminus of replication are less probable than those that do not. Current methods for establishing the inversion distance between two bacterial genomes are unable to incorporate such information. In this paper we suggest a group-theoretic framework that in principle can take these constraints into account. In particular, we show that by lifting the problem from circular permutations to the affine symmetric group, the inversion distance can be found in polynomial time for a model in which inversions are restricted to acting on two regions. This requires the proof of new results in group theory, and suggests a vein of new combinatorial problems concerning permutation groups on which group theorists will be needed to collaborate with biologists. We apply the new method to inferring distances and phylogenies for published Yersinia pestis data.Comment: 19 pages, 7 figures, in Press, Journal of Mathematical Biolog

    A Global Approach for Solving Edge-Matching Puzzles

    Full text link
    We consider apictorial edge-matching puzzles, in which the goal is to arrange a collection of puzzle pieces with colored edges so that the colors match along the edges of adjacent pieces. We devise an algebraic representation for this problem and provide conditions under which it exactly characterizes a puzzle. Using the new representation, we recast the combinatorial, discrete problem of solving puzzles as a global, polynomial system of equations with continuous variables. We further propose new algorithms for generating approximate solutions to the continuous problem by solving a sequence of convex relaxations
    • ā€¦
    corecore