3,167 research outputs found

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture

    On Some Integrated Approaches to Inference

    Full text link
    We present arguments for the formulation of unified approach to different standard continuous inference methods from partial information. It is claimed that an explicit partition of information into a priori (prior knowledge) and a posteriori information (data) is an important way of standardizing inference approaches so that they can be compared on a normative scale, and so that notions of optimal algorithms become farther-reaching. The inference methods considered include neural network approaches, information-based complexity, and Monte Carlo, spline, and regularization methods. The model is an extension of currently used continuous complexity models, with a class of algorithms in the form of optimization methods, in which an optimization functional (involving the data) is minimized. This extends the family of current approaches in continuous complexity theory, which include the use of interpolatory algorithms in worst and average case settings

    Self-growing neural network architecture using crisp and fuzzy entropy

    Get PDF
    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed

    Bayesian Deep Net GLM and GLMM

    Full text link
    Deep feedforward neural networks (DFNNs) are a powerful tool for functional approximation. We describe flexible versions of generalized linear and generalized linear mixed models incorporating basis functions formed by a DFNN. The consideration of neural networks with random effects is not widely used in the literature, perhaps because of the computational challenges of incorporating subject specific parameters into already complex models. Efficient computational methods for high-dimensional Bayesian inference are developed using Gaussian variational approximation, with a parsimonious but flexible factor parametrization of the covariance matrix. We implement natural gradient methods for the optimization, exploiting the factor structure of the variational covariance matrix in computation of the natural gradient. Our flexible DFNN models and Bayesian inference approach lead to a regression and classification method that has a high prediction accuracy, and is able to quantify the prediction uncertainty in a principled and convenient way. We also describe how to perform variable selection in our deep learning method. The proposed methods are illustrated in a wide range of simulated and real-data examples, and the results compare favourably to a state of the art flexible regression and classification method in the statistical literature, the Bayesian additive regression trees (BART) method. User-friendly software packages in Matlab, R and Python implementing the proposed methods are available at https://github.com/VBayesLabComment: 35 pages, 7 figure, 10 table

    Incorporating Second-Order Functional Knowledge for Better Option Pricing

    Get PDF
    Incorporating prior knowledge of a particular task into the architecture of a learning algorithm can greatly improve generalization performance. We study here a case where we know that the function to be learned is non-decreasing in its two arguments and convex in one of them. For this purpose we propose a class of functions similar to multi-layer neural networks but (1) that has those properties, (2) is a universal approximator of continuous functions with these and other properties. We apply this new class of functions to the task of modeling the price of call options. Experiments show improvements on regressing the price of call options using the new types of function classes that incorporate the a priori constraints. Incorporer une connaissance a priori pour une tache particulière aux algorithmes d'apprentissage peut grandement améliorer leur performance en généralisation. Dans cet article, nous étudions un cas où nous savons que la fonction à apprendre est non-décroissante pour ses deux arguments, et convexe pour l'un d'entre eux. Pour ce cas particulier, nous proposons une classe de fonctions similaires aux réseaux de neurones multi-couches mais (1) avec les propriétés mentionnées plus haut, et (2) est un approximateur universel de fonctions continues avec ces propriétés et avec d'autres. Nous appliquons cette nouvelle classe de fonctions au problème de la modélisation du prix des options d'achat. Nos expériences montrent une amélioration pour la régression sur ces prix d'options d'achat lorsque nous utilisons la nouvelle classe de fonctions qui incorporent les contraintes a priori.Prior knowledge, learning algorithm, universal approximator, call options, Connaissance a priori, algorithme d'apprentissage, approximateur universel, options d'achat
    corecore