35,493 research outputs found

    A comparison of variational, differential quadrature, and approximate closed-form solution methods for buckling of highly flexurally anisotropic laminates

    Get PDF
    The buckling response of symmetric laminates that possess strong exural-twist coupling are studied using different methodologies. Such plates are dfficult to analyse due to localised gradients in the mode shape. Initially, the energy method (Rayleigh-Ritz) using Legendre polynomials is employed and the difficulty of achieving reliable solutions for some extreme cases is discussed. To overcome the convergence problems, the concept of Lagrangian multiplier is introduced into the Rayleigh-Ritz formulation. The Lagrangian multiplier approach is able to provide the upper and lower bounds of critical buckling load results. In addition, mixed variational principles are used to gain a better understanding of the mechanics behind the strong exural-twist anisotropy effect on buckling solutions. Specifically, the Hellinger-Reissner variational principle is used to study the effect of exural-twist coupling on buckling and also to explore the potential for developing closed form solutions for these problems. Finally, solutions using the differential quadrature method are obtained. Numerical results of buckling coefficients for highly anisotropic plates with different boundary conditions are studied using the proposed approaches and compared with finite element results. The advantages of both Lagrangian multiplier theory and variational principle in evaluating buckling loads are discussed. In addition, a new simple closed form solution is shown for the case of a exurally anisotropic plate with three sides simply supported and one long edge free

    A Unified Approach to Variational Derivatives of Modified Gravitational Actions

    Full text link
    Our main aim in this paper is to promote the coframe variational method as a unified approach to derive field equations for any given gravitational action containing the algebraic functions of the scalars constructed from the Riemann curvature tensor and its contractions. We are able to derive a master equation which expresses the variational derivatives of the generalized gravitational actions in terms of the variational derivatives of its constituent curvature scalars. Using the Lagrange multiplier method relative to an orthonormal coframe, we investigate the variational procedures for modified gravitational Lagrangian densities in spacetime dimensions n3n\geqslant 3. We study well-known gravitational actions such as those involving the Gauss-Bonnet and Ricci-squared, Kretchmann scalar, Weyl-squared terms and their algebraic generalizations similar to generic f(R)f(R) theories and the algebraic generalization of sixth order gravitational Lagrangians. We put forth a new model involving the gravitational Chern-Simons term and also give three dimensional New massive gravity equations in a new form in terms of the Cotton 2-form

    A Distributed Asynchronous Method of Multipliers for Constrained Nonconvex Optimization

    Get PDF
    This paper presents a fully asynchronous and distributed approach for tackling optimization problems in which both the objective function and the constraints may be nonconvex. In the considered network setting each node is active upon triggering of a local timer and has access only to a portion of the objective function and to a subset of the constraints. In the proposed technique, based on the method of multipliers, each node performs, when it wakes up, either a descent step on a local augmented Lagrangian or an ascent step on the local multiplier vector. Nodes realize when to switch from the descent step to the ascent one through an asynchronous distributed logic-AND, which detects when all the nodes have reached a predefined tolerance in the minimization of the augmented Lagrangian. It is shown that the resulting distributed algorithm is equivalent to a block coordinate descent for the minimization of the global augmented Lagrangian. This allows one to extend the properties of the centralized method of multipliers to the considered distributed framework. Two application examples are presented to validate the proposed approach: a distributed source localization problem and the parameter estimation of a neural network.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0648

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual \ell1 linearly constrained Lagrangian (pd\ell1-LCL) method
    corecore