18,578 research outputs found

    A maximum uncertainty LDA-based approach for limited sample size problems – with application to Face Recognition

    Get PDF
    A critical issue of applying Linear Discriminant Analysis (LDA) is both the singularity and instability of the within-class scatter matrix. In practice, particularly in image recognition applications such as face recognition, there are often a large number of pixels or pre-processed features available, but the total number of training patterns is limited and commonly less than the dimension of the feature space. In this paper, a new LDA-based method is proposed. It is based on a straighforward stabilisation approach for the within-class scatter matrix. In order to evaluate its effectiveness, experiments on face recognition using the well-known ORL and FERET face databases were carried out and compared with other LDA-based methods. The results indicate that our method improves the LDA classification performance when the within-class scatter matrix is not only singular but also poorly estimated, with or without a Principal Component Analysis intermediate step and using less linear discriminant features

    2D Face Recognition System Based on Selected Gabor Filters and Linear Discriminant Analysis LDA

    Full text link
    We present a new approach for face recognition system. The method is based on 2D face image features using subset of non-correlated and Orthogonal Gabor Filters instead of using the whole Gabor Filter Bank, then compressing the output feature vector using Linear Discriminant Analysis (LDA). The face image has been enhanced using multi stage image processing technique to normalize it and compensate for illumination variation. Experimental results show that the proposed system is effective for both dimension reduction and good recognition performance when compared to the complete Gabor filter bank. The system has been tested using CASIA, ORL and Cropped YaleB 2D face images Databases and achieved average recognition rate of 98.9 %

    Comparative Analysis of advanced Face Recognition Techniques

    Get PDF
    ABSTRACT: This project entitled "Comparative analysis of advanced Face Recognition Techniques", it is based on fuzzy c means clustering and associated sub neural network. It deals with the face is a complex multidimensional visual model and developing a computational model for face recognition is difficult. In this paper, it represents a method for face recognition base on similar neural networks. Neural networks (NNs) have been widely used in various fields. However, the computing effectiveness decreases rapidly if the scale of the NN increases. In this paper, a new method of face recognition based on fuzzy clustering and parallel NNs is proposed. The face patterns are divided into several small-scale neural networks based on fuzzy clustering and they are combine to obtain the recognition result. The facial feature vector was compared by PCA and LDA methods. In particular, the proposed method achieved 98.75% recognition accuracy for 240 patterns of 20 registrants and a 99.58% rejection rate for 240 patterns of 20 nonregistrants. Experimental results show that the performance of our new face-recognition method is better than those of the LDA based face recognition system

    Setting a world record in 3D face recognition

    Get PDF
    Biometrics - recognition of persons based on how they look or behave, is the main subject of research at the Chair of Biometric Pattern Recognition (BPR) of the Services, Cyber Security and Safety Group (SCS) of the EEMCS Faculty at the University of Twente. Examples are finger print recognition, iris and face recognition. A relatively new field is 3D face recognition based on the shape of the face rather that its appearance. This paper presents a method for 3D face recognition developed at the Chair of Biometric Pattern Recognition (BPR) of the Services, Cyber Security and Safety Group (SCS) of the EEMCS Faculty at the University of Twente and published in 2011. The paper also shows that noteworthy performance gains can be obtained by optimisation of an existing method. The method is based on registration to an intrinsic coordinate system using the vertical symmetry plane of the head, the tip of the nose and the slope of the nose bridge. For feature extraction and classification multiple regional PCA-LDA-likelihood ratio based classifiers are fused using a fixed FAR voting strategy. We present solutions for correction of motion artifacts in 3D scans, improved registration and improved training of the used PCA-LDA classifier using automatic outlier removal. These result in a notable improvement of the recognition rates. The all vs all verification rate for the FRGC v2 dataset jumps to 99.3% and the identification rate for the all vs first to 99.4%. Both are to our knowledge the best results ever obtained for these benchmarks by a fairly large margin

    Two-Dimensional Heteroscedastic Feature Extraction Technique for Face Recognition

    Get PDF
    One limitation of vector-based LDA and its matrix-based extension is that they cannot deal with heteroscedastic data. In this paper, we present a novel two-dimensional feature extraction technique for face recognition which is capable of handling the heteroscedastic data in the dataset. The technique is a general form of two-dimensional linear discriminant analysis. It generalizes the interclass scatter matrix of two-dimensional LDA by applying the Chernoff distance as a measure of separation of every pair of clusters with the same index in different classes. By employing the new distance, our method can capture the discriminatory information presented in the difference of covariance matrices of different clusters in the datasets while preserving the computational simplicity of eigenvalue-based techniques. So our approach is a proper technique for high-dimensional applications such as face recognition. Experimental results on CMU-PIE, AR and AT & T face databases demonstrate the effectiveness of our method in term of classification accuracy

    3D Dynamic Expression Recognition Based on a Novel Deformation Vector Field and Random Forest

    Get PDF
    International audienceThis paper proposes a new method for facial motion extraction to represent, learn and recognize observed expressions, from 4D video sequences. The approach called Deformation Vector Field (DVF) is based on Riemannian facial shape analysis and captures densely dynamic information from the entire face. The resulting temporal vector field is used to build the feature vector for expression recognition from 3D dynamic faces. By applying LDA-based feature space transformation for dimensionality reduction which is followed by a Multiclass Random Forest learning algorithm, the proposed approach achieved 93% average recognition rate on BU-4DFE database and outperforms state-of-art approaches

    Robust Face Representation and Recognition Under Low Resolution and Difficult Lighting Conditions

    Get PDF
    This dissertation focuses on different aspects of face image analysis for accurate face recognition under low resolution and poor lighting conditions. A novel resolution enhancement technique is proposed for enhancing a low resolution face image into a high resolution image for better visualization and improved feature extraction, especially in a video surveillance environment. This method performs kernel regression and component feature learning in local neighborhood of the face images. It uses directional Fourier phase feature component to adaptively lean the regression kernel based on local covariance to estimate the high resolution image. For each patch in the neighborhood, four directional variances are estimated to adapt the interpolated pixels. A Modified Local Binary Pattern (MLBP) methodology for feature extraction is proposed to obtain robust face recognition under varying lighting conditions. Original LBP operator compares pixels in a local neighborhood with the center pixel and converts the resultant binary string to 8-bit integer value. So, it is less effective under difficult lighting conditions where variation between pixels is negligible. The proposed MLBP uses a two stage encoding procedure which is more robust in detecting this variation in a local patch. A novel dimensionality reduction technique called Marginality Preserving Embedding (MPE) is also proposed for enhancing the face recognition accuracy. Unlike Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which project data in a global sense, MPE seeks for a local structure in the manifold. This is similar to other subspace learning techniques but the difference with other manifold learning is that MPE preserves marginality in local reconstruction. Hence it provides better representation in low dimensional space and achieves lower error rates in face recognition. Two new concepts for robust face recognition are also presented in this dissertation. In the first approach, a neural network is used for training the system where input vectors are created by measuring distance from each input to its class mean. In the second approach, half-face symmetry is used, realizing the fact that the face images may contain various expressions such as open/close eye, open/close mouth etc., and classify the top half and bottom half separately and finally fuse the two results. By performing experiments on several standard face datasets, improved results were observed in all the new proposed methodologies. Research is progressing in developing a unified approach for the extraction of features suitable for accurate face recognition in a long range video sequence in complex environments
    • …
    corecore