5,212 research outputs found

    MultiFarm: A benchmark for multilingual ontology matching

    Full text link
    In this paper we present the MultiFarm dataset, which has been designed as a benchmark for multilingual ontology matching. The MultiFarm dataset is composed of a set of ontologies translated in different languages and the corresponding alignments between these ontologies. It is based on the OntoFarm dataset, which has been used successfully for several years in the Ontology Alignment Evaluation Initiative (OAEI). By translating the ontologies of the OntoFarm dataset into eight different languages – Chinese, Czech, Dutch, French, German, Portuguese, Russian, and Spanish – we created a comprehensive set of realistic test cases. Based on these test cases, it is possible to evaluate and compare the performance of matching approaches with a special focus on multilingualism

    Enriching Ontologies with Multilingual Information

    Get PDF
    Multilinguality in ontologies has become an impending need for institutions worldwide that have to deal with data and linguistic resources in different natural languages. Since most ontologies are developed in one language, obtaining multilingual ontologies implies to localize or adapt them to a concrete language and culture community. As the adaptation of the ontology conceptualization demands considerable efforts, we propose to modify the ontology terminological layer by associating an external repository of linguistic data to the ontology. With this aim we provide a model called Linguistic Information Repository (LIR) that associated to the ontology meta-model allows terminological layer localization

    Multilingual manager: a new strategic role in organizations

    Get PDF
    Today?s knowledge management (KM) systems seldom account for language management and, especially, multilingual information processing. Document management is one of the strongest components of KM systems. If these systems do not include a multilingual knowledge management policy, intranet searches, excessive document space occupancy and redundant information slow down what are the most effective processes in a single language environment. In this paper, we model information flow from the sources of knowledge to the persons/systems searching for specific information. Within this framework, we focus on the importance of multilingual information processing, which is a hugely complex component of modern organizations

    Evaluating Knowledge Representation and Reasoning Capabilites of Ontology Specification Languages

    Get PDF
    The interchange of ontologies across the World Wide Web (WWW) and the cooperation among heterogeneous agents placed on it is the main reason for the development of a new set of ontology specification languages, based on new web standards such as XML or RDF. These languages (SHOE, XOL, RDF, OIL, etc) aim to represent the knowledge contained in an ontology in a simple and human-readable way, as well as allow for the interchange of ontologies across the web. In this paper, we establish a common framework to compare the expressiveness of "traditional" ontology languages (Ontolingua, OKBC, OCML, FLogic, LOOM) and "web-based" ontology languages. As a result of this study, we conclude that different needs in KR and reasoning may exist in the building of an ontology-based application, and these needs must be evaluated in order to choose the most suitable ontology language(s)

    Knowledge Organization Systems (KOS) in the Semantic Web: A Multi-Dimensional Review

    Full text link
    Since the Simple Knowledge Organization System (SKOS) specification and its SKOS eXtension for Labels (SKOS-XL) became formal W3C recommendations in 2009 a significant number of conventional knowledge organization systems (KOS) (including thesauri, classification schemes, name authorities, and lists of codes and terms, produced before the arrival of the ontology-wave) have made their journeys to join the Semantic Web mainstream. This paper uses "LOD KOS" as an umbrella term to refer to all of the value vocabularies and lightweight ontologies within the Semantic Web framework. The paper provides an overview of what the LOD KOS movement has brought to various communities and users. These are not limited to the colonies of the value vocabulary constructors and providers, nor the catalogers and indexers who have a long history of applying the vocabularies to their products. The LOD dataset producers and LOD service providers, the information architects and interface designers, and researchers in sciences and humanities, are also direct beneficiaries of LOD KOS. The paper examines a set of the collected cases (experimental or in real applications) and aims to find the usages of LOD KOS in order to share the practices and ideas among communities and users. Through the viewpoints of a number of different user groups, the functions of LOD KOS are examined from multiple dimensions. This paper focuses on the LOD dataset producers, vocabulary producers, and researchers (as end-users of KOS).Comment: 31 pages, 12 figures, accepted paper in International Journal on Digital Librarie

    Developing an ontology of mathematical logic

    Get PDF
    An ontology provides a mechanism to formally represent a body of knowledge. Ontologies are one of the key technologies supporting the Semantic Web and the desire to add meaning to the information available on the World Wide Web. They provide the mechanism to describe a set of concepts, their properties and their relations to give a shared representation of knowledge. The MALog project are developing an ontology to support the development of high-quality learning materials in the general area of mathematical logic. This ontology of mathematical logic will form the basis of the semantic architecture allowing us to relate different learning objects and recommend appropriate learning paths. This paper reviews the technologies used to construct the ontology, the use of the ontology to support learning object development and explores the potential future use of the ontology

    Web 2.0, language resources and standards to automatically build a multilingual named entity lexicon

    Get PDF
    This paper proposes to advance in the current state-of-the-art of automatic Language Resource (LR) building by taking into consideration three elements: (i) the knowledge available in existing LRs, (ii) the vast amount of information available from the collaborative paradigm that has emerged from the Web 2.0 and (iii) the use of standards to improve interoperability. We present a case study in which a set of LRs for different languages (WordNet for English and Spanish and Parole-Simple-Clips for Italian) are extended with Named Entities (NE) by exploiting Wikipedia and the aforementioned LRs. The practical result is a multilingual NE lexicon connected to these LRs and to two ontologies: SUMO and SIMPLE. Furthermore, the paper addresses an important problem which affects the Computational Linguistics area in the present, interoperability, by making use of the ISO LMF standard to encode this lexicon. The different steps of the procedure (mapping, disambiguation, extraction, NE identification and postprocessing) are comprehensively explained and evaluated. The resulting resource contains 974,567, 137,583 and 125,806 NEs for English, Spanish and Italian respectively. Finally, in order to check the usefulness of the constructed resource, we apply it into a state-of-the-art Question Answering system and evaluate its impact; the NE lexicon improves the system’s accuracy by 28.1%. Compared to previous approaches to build NE repositories, the current proposal represents a step forward in terms of automation, language independence, amount of NEs acquired and richness of the information represented

    Experiments on applying relaxation labeling to map multilingual hierarchies

    Get PDF
    This paper explores the automatic construction of a multilingual Lexical Knowledge Base from preexisting lexical resources. This paper presents a new approach for linking already existing hierarchies. The Relaxation labeling algorithm is used to select --among all the candidate connections proposed by a bilingual dictionary-- the right conection for each node in the taxonomy.Postprint (published version

    Empirical analysis of impacts of instance-driven changes in ontologies

    Get PDF
    Changes in the characterization of instances in digital contents are one of the rationales to change or evolve ontologies which support the domain. These changes can impacts on one or more of interrelated ontologies. Before implementing changes, their impact on the target ontology, other dependent ontologies or dependent systems should be analysed. We investigate three concerns for the determination of impacts of changes in ontologies: representation of changes to ensure minimum impact, impact determination and integrity determination. Key elements of our solution are the operationalization of change operations to minimize impacts, a parameterization approach for the determination of impacts, a categorization scheme for identified impacts, and prioritization technique for change operations based on the severity of impacts
    corecore