6,148 research outputs found

    Satellite Emission Range Inferred Earth Survey (SERIES) project

    Get PDF
    The Global Positioning System (GPS) was developed by the Department of Defense primarily for navigation use by the United States Armed Forces. The system will consist of a constellation of 18 operational Navigation Satellite Timing and Ranging (NAVSTAR) satellites by the late 1980's. During the last four years, the Satellite Emission Range Inferred Earth Surveying (SERIES) team at the Jet Propulsion Laboratory (JPL) has developed a novel receiver which is the heart of the SERIES geodetic system designed to use signals broadcast from the GPS. This receiver does not require knowledge of the exact code sequence being transmitted. In addition, when two SERIES receivers are used differentially to determine a baseline, few cm accuracies can be obtained. The initial engineering test phase has been completed for the SERIES Project. Baseline lengths, ranging from 150 meters to 171 kilometers, have been measured with 0.3 cm to 7 cm accuracies. This technology, which is sponsored by the NASA Geodynamics Program, has been developed at JPL to meet the challenge for high precision, cost-effective geodesy, and to complement the mobile Very Long Baseline Interferometry (VLBI) system for Earth surveying

    A Portfolio Approach to NLOS and Multipath Mitigation in Dense Urban Areas

    Get PDF
    Non-line-of-sight (NLOS) reception and multipath interference are major causes of poor GNSS positioning accuracy in dense urban environments. They are commonly grouped together. However, both the mechanisms by which they cause position errors and many of the techniques for mitigating those errors are quite different [1]. For example, correlation-based multipath mitigation has no effect on the errors caused by NLOS reception. University College London (UCL) has investigated the performance of a number of multipath and/or NLOS mitigation techniques in dense urban areas, including C/N0-based solution weighting [2], advanced consistency checking [3], dual-polarization NLOS detection [4] and vector tracking [5]. In this paper, we present a new multipath detection technique based on comparing the measured C/N0 on multiple frequencies and also new dual-polarization results. Meanwhile, other researchers have demonstrated NLOS detection using a panoramic camera [6, 7] or 3D city model [8, 9] and detection of NLOS and multipath using an antenna array [10]. All of these techniques bring some improvement in positioning performance in urban environments, but none of them eliminate the effects of both NLOS reception and multipath interference completely. As the different techniques are largely complementary, best performance is obtained by using several of them in combination, a portfolio approach. This paper comprises three parts. The first presents a feasibility study on a new multipath detection technique using multi-frequency C/N0 measurements. Constructive multipath interference results in an increase in the measured C/N0, whereas destructive multipath interference results in a decrease. As the phase of a reflected signal with respect to its directly received counterpart depends on the wavelength, the multipath interference may be constructive on one frequency and destructive on another. Thus, by comparing the difference in measured C/N0 between two frequencies with what would normally be expected for that signal at that elevation angle, strong multipath interference may be detected. However, the converse is not true because, depending on the path delay, the phase of the multipath interference may also be consistent across the two frequencies. Consistency across three frequencies in the presence of multipath interference is much less likely than consistency across two. Therefore, by comparing C/N0 measured across three (or more) frequencies, the chance of detection is improved substantially, noting that reliability is less critical as part of a portfolio approach to multipath detection than for a stand-alone technique. Experimental results are presented demonstrating the potential of this approach using GPS and GLONASS data collected in Central London. The second part of the paper presents the results of the first multi-constellation test of the dual-polarization NLOS detection technique pioneered at UCL [4]. This separately correlates the right hand circularly polarized (RHCP) and left hand circularly polarized (LHCP) outputs of a dual-polarization antenna and differences the resulting C/N0 measurements, producing a result that is positive for directly received signals and negative for most NLOS signals. Data was collected at six different sites in Central London and NLOS reception of both GPS and GLONASS signals was detected. Position solutions with the NLOS signals removed are compared with the corresponding all-satellite solutions. The final part of the paper addresses the portfolio approach to NLOS and multipath mitigation. Each technique is assessed qualitatively for its ease of implementation and its efficiency at detecting or directly mitigating both NLOS reception and multipath mitigation. A compatibility matrix is then presented showing which techniques may be combined without conflict. Suitable portfolios are then proposed both for professional-grade and for consumer-grade user equipment. References [1] Groves, P. D., Principles of GNSS, inertial, and multi-sensor integrated navigation systems, Second Edition, Artech House, 2013. [2] Jiang, Z., P. Groves, W. Y. Ochieng, S. Feng, C. D. Milner, and P. G. Mattos, “Multi-Constellation GNSS Multipath Mitigation Using Consistency Checking,” Proc. ION GNSS 2011. [3] Jiang, Z., and P. Groves, “GNSS NLOS and Multipath Error Mitigation using Advanced Multi-Constellation Consistency Checking with Height Aiding,” Proc. ION GNSS 2012. [4] Jiang, Z., and P. D. Groves, “NLOS GPS Signal Detection Using A Dual-Polarisation Antenna,” GPS Solutions, 2012, DOI: 10.1007/s10291-012-0305-5. [5] Hsu, L.-T., P. D. Groves, and S.-S. Jan, “Assessment of the Multipath Mitigation Effect of Vector Tracking in an Urban Environment,” Proc ION Pacific PNT, 2013. [6] Marais, J., M. Berbineau, and M. Heddebaut, “Land Mobile GNSS Availability and Multipath Evaluation Tool,” IEEE Transactions on Vehicular Technology, Vol. 54, No. 5, 2005, pp. 1697-1704. [7] Meguro, J., et al., “GPS Multipath Mitigation for Urban Area Using Omnidirectional Infrared Camera,” IEEE Transactions on Intelligent Transportation Systems, Vol. 10, No. 1, 2009, pp. 22-30. [8] Obst, M., S. Bauer, and G. Wanielik, “Urban Multipath Detection and mitigation with Dynamic 3D Maps for Reliable Land Vehicle Localization,” Proc. IEEE/ION PLANS 2012. [9] Peyraud, S., et al., “About Non-Line-Of-Sight Satellite Detection and Exclusion in a 3D Map-Aided Localization Algorithm,” Sensors, Vol. 13, 2013, pp. 829-847. [10] Keshvadi, M. H., A. Broumandan, and G. Lachapelle, “Analysis of GNSS Beamforming and Angle of Arrival Estimation in Multipath Environments," Proc ION ITM, San Diego, CA, January 2011, pp. 427-435

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    Fully Autonomous Orbit Determination and Synchronization for Satellite Navigation and Communication Systems in Halo Orbits

    Get PDF
    This paper presents a solution for autonomous orbit determination and time synchronization of spacecraft in Halo orbits around Lagrange points using inter-satellite links. Lagrange points are stable positions in the gravitational field of two large bodies that allow for a sustained presence of a spacecraft in a specific region. However, a challenge in operating at these points is the lack of fixed landmarks for orbit determination. The proposed solution involves using inter-satellite links to perform range and range-rate measurements, allowing for accurate computation of the spacecraft's orbit parameters without the need for any facilities on Earth. Simulations using a fleet of three satellites in Near Rectilinear Halo Orbits around the Earth-Moon Lagrange point, proposed for the Lunar Gateway stations, were conducted to demonstrate the feasibility of the approach. The results show that inter-satellite links can provide reliable and accurate solutions for orbit determination with a DRMS error lower than one meter (90th percentile) and synchronization errors of around one nanosecond. This solution paves the way for a fully autonomous fleet of spacecraft that can be used for observation, telecommunication, and navigation missions

    Continued study of NAVSTAR/GPS for general aviation

    Get PDF
    A conceptual approach for examining the full potential of Global Positioning Systems (GPS) for the general aviation community is presented. Aspects of an experimental program to demonstrate these concepts are discussed. The report concludes with the observation that the true potential of GPS can only be exploited by utilization in concert with a data link. The capability afforded by the combination of position location and reporting stimulates the concept of GPS providing the auxiliary functions of collision avoidance, and approach and landing guidance. A series of general recommendations for future NASA and civil community efforts in order to continue to support GPS for general aviation are included

    Mapping of ionospheric total electron content using global navigation satellite systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Automotive applications of high precision GNSS

    Get PDF
    This thesis aims to show that Global Navigation Satellite Systems (GNSS) positioning can play a significant role in the positioning systems of future automotive applications. This is through the adoption of state-of-the-art GNSS positioning technology and techniques, and the exploitation of the rapidly developing vehicle-to-vehicle concept. The merging together of these two developments creates greater performance than can be achieved separately. The original contribution of this thesis comes from this combination: Through the introduction of the Pseudo-VRS concept. Pseudo-VRS uses the princples of Network Real Time Kinematic (N-RTK) positioning to share GNSS information between vehicles, which enables absolute vehicle positioning. Pseudo-VRS is shown to improve the performance of high precision GNSS positioning for road vehicles, through the increased availability of GNSS correction messages and the rapid resolution of the N-RTK fixed solution. Positioning systems in the automotive sector are dominated by satellite-based solutions provided by GNSS. This has been the case since May 2001, when the United States Department of Defense switched off Selective Availability, enabling significantly improved positioning performance for civilian users. The average person most frequently encounters GNSS when using electronic personal navigation devices. The Sat Nav or GPS Navigator is ubiquitous in modern societies, where versions can be found on nomadic devices such as smartphones and dedicated personal navigation devices, or built in to the dashboards of vehicles. Such devices have been hugely successful due to their intrinsic ability to provide position information anywhere in the world with an accuracy of approximately 10 metres, which has proved ideal for general navigation applications. There are a few well known limitations of GNSS positioning, including anecdotal evidence of incorrect navigation advice for personal navigation devices, but these are minor compared to the overall positioning performance. Through steady development of GNSS positioning devices, including the integration of other low cost sensors (for instance, wheel speed or odometer sensors in vehicles), and the development of robust map matching algorithms, the performance of these devices for navigation applications is truly incredible. However, when tested for advanced automotive applications, the performance of GNSS positioning devices is found to be inadequate. In particular, in the most advanced fields of research such as autonomous vehicle technology, GNSS positioning devices are relegated to a secondary role, or often not used at all. They are replaced by terrestrial sensors that provide greater situational awareness, such as radar and lidar. This is due to the high performance demand of such applications, including high positioning accuracy (sub-decimetre), high availability and continuity of solutions (100%), and high integrity of the position information. Low-cost GNSS receivers generally do not meet such requirements. This could be considered an enormous oversight, as modern GNSS positioning technology and techniques have significantly improved satellite-based positioning performance. Other non-GNSS techniques also have their limitations that GNSS devices can minimise or eliminate. For instance, systems that rely on situational awareness require accurate digital maps of their surroundings as a reference. GNSS positioning can help to gather this data, provide an input, and act as a fail-safe in the event of digital map errors. It is apparent that in order to deliver advanced automotive applications - such as semi- or fully-autonomous vehicles - there must be an element of absolute positioning capability. Positioning systems will work alongside situational awareness systems to enable the autonomous vehicles to navigate through the real world. A strong candidate for the positioning system is GNSS positioning. This thesis builds on work already started by researchers at the University of Nottingham, to show that N-RTK positioning is one such technique. N-RTK can provide sub-decimetre accuracy absolute positioning solutions, with high availability, continuity, and integrity. A key component of N-RTK is the availability of real-time GNSS correction data. This is typically delivered to the GNSS receiver via mobile internet (for a roving receiver). This can be a significant limitation, as it relies on the performance of the mobile communications network, which can suffer from performance degradation during dynamic operation. Mobile communications systems are expected to improve significantly over the next few years, as consumers demand faster download speeds and wider availability. Mobile communications coverage already covers a high percentage of the population, but this does not translate into a high percentage of a country's geography. Pockets of poor coverage, often referred to as notspots, are widespread. Many of these notspots include the transportation infrastructure. The vehicle-to-vehicle concept has made significant forward steps in the last few years. Traditionally promoted as a key component of future automotive safety applications, it is now driven primarily by increased demand for in-vehicle infotainment. The concept, which shares similarities with the Internet of Things and Mobile Ad-hoc Networks, relies on communication between road vehicles and other road agents (such as pedestrians and road infrastructure). N-RTK positioning can take advantage of this communication link to minimise its own communications-related limitations. Sharing GNSS information between local GNSS receivers enables better performance of GNSS positioning, based on the principles of differential GNSS and N-RTK positioning techniques. This advanced concept is introduced and tested in this thesis. The Pseudo VRS concept follows the protocols and format of sharing GNSS data used in N-RTK positioning. The technique utilises the latest GNSS receiver design, including multiple frequency measurements and high quality antennas

    GPS for Marine Navigation and Hydrography

    Get PDF
    Current marine navigation and shipbome surveying accuracy requirements are reviewed. The technical characteristics of GPS are summarized and its single point positioning performance is given and compared with the above requirements. A detailed description and analysis of the three types of observables possible with GPS, namely code, carrier and Doppler frequency measurements, are presented. The following error sources are discussed: cycle slips, Selective Availability, ionospheric and tropospheric effects and multipath. A description of the various receiver measuring techniques currently available, namely C/A code LI, L2 squaring, L2 codeless, P codeless and P code, is given, together with advantages and disadvantages for marine positioning. The single and double differenced observables used in differential GPS (DGPS) mode are analysed in terms of real time versus postmission suitability. The latest techniques for quasi-instantaneous ambiguity resolution such as wide and extra wide-laning are discussed in terms of receiver requirements and operational procedures. An attempt is made at providing DGPS kinematic accuracy estimates for various cases with and without Selective Availability. Trends and prospects are forecast in the following five areas: system enhancements, user equipment, observable types and modelling, marine applications and GPS-related services

    Single-Frequency GPS Relative Navigation in a High Ionosphere Orbital Environment

    Get PDF
    The Global Positioning System (GPS) provides a convenient source for space vehicle relative navigation measurements, especially for low Earth orbit formation flying and autonomous rendezvous mission concepts. For single-frequency GPS receivers, ionospheric path delay can be a significant error source if not properly mitigated. In particular, ionospheric effects are known to cause significant radial position error bias and add dramatically to relative state estimation error if the onboard navigation software does not force the use of measurements from common or shared GPS space vehicles. Results from GPS navigation simulations are presented for a pair of space vehicles flying in formation and using GPS pseudorange measurements to perform absolute and relative orbit determination. With careful measurement selection techniques relative state estimation accuracy to less than 20 cm with standard GPS pseudorange processing and less than 10 cm with single-differenced pseudorange processing is shown
    • …
    corecore